153 resultados para Cyanogenic Glycoside
Resumo:
A cyanogenic glycoside -6'-O-galloylsambunigrin - has been isolated from the foliage of the Australian tropical rainforest tree species Elaeocarpus sericopetalus F. Muell. (Elaeocarpaceae). This is the first formal characterisation of a cyanogenic constituent in the Elaeocarpaceae family, and only the second in the order Malvales. 6'-O-galloylsambunigrin was identified as the principal glycoside, accounting for 91% of total cyanogen in a leaf methanol extract. Preliminary analyses indicated that the remaining cyanogen content may comprise small quantities of sambunigrin, as well as di- and tri-gallates of sambunigrin. E. sericopetalus was found to have foliar concentrations of cyanogenic glycosides among the highest reported for tree leaves, up to 5.2 mg CN g(-1) dry wt. (c) 2006 Elsevier Ltd. All rights reserved.
Separation of the toxic zierin from Zollernia ilicifolia by high speed countercurrent chromatography
Resumo:
Preliminary pharmacological assays of the 70% methanol extract from the leaves of the Brazilian medicinal plant Zollernia ilicifolia Vog. (Fabaceae) showed analgesic and antiulcerogenic effects. Previous analyses have shown that this extract contains, besides flavonoid glycosides and saponins, a toxic cyanogenic glycoside. Flavonoids and saponins are compounds reported in literature with antiulcerogenic activity. In this work, we developed a methodology to separate the cyanogenic glycoside from these compounds in order to obtain enough amount of material to perform pharmacological assays. The cyanogenic glycoside zierin (2S)-β-D-glucopyranosyloxy-(3-hydroxy-phenyl)- acetonitrile was separated from the other components by high speed countercurrent chromatography (HSCCC). The solvent system used was composed of chloroform-methanol-n-propanol-water (5:6:1:4, v/v/v/v). This technique led to the separation of zierin from the possible active compounds of Zollernia ilicifolia.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
A phytochemical investigation of the ethanolic extract of stalks of Senna martiana Benth. (Leguminoseae), native specie of northeast Brazil, resulted in the isolation and spectroscopic characterization of a new bianthrone glycoside, martianine 1 (10,10'-il-chrysophanol-10-oxi10,10'-bi-glucosyl). Its identification was established by HRMS, IR and 2D NMR experiments. The evaluation of martianine trypanocidal activity was carried out against gliceraldehyde 3-phosphate dehydrogenase enzyme from Trypanosoma cruzi. Its inhibitory constant (Ki) is in the low micromolar concentration and it was determined by isothermal titration calorimetry to be 27.3 ± 2.47 µmol L-1. The non-competitive mechanism is asserted to be putative of the mode of action martianine displays against T. cruzi GAPDH. Results show that martianine has a great potential to become new lead molecule by inhibiting this key enzyme and for the development of new drugs against Chagas disease.
Resumo:
Stevia rebaudiana, a South American plant normally used as a natural herbal sweetener, has been suggested as exerting beneficial effects on human health, including as an antihypertensive and antihyperglycemic. The present experiment was undertaken to evaluate the renal excretion of steviol, the aglycone of several natural products extracted from the leaves of S. rebaudiana, and to clarify the actual participation of this compound on the renal excretion of glucose in rats, which has been previously suggested as the preferential action of steviol on the Na+-glucose renal tubular transport system. Steviol was obtained by enzymatic hydrolysis of stevioside with pectinase. Thirty normal male Wistar rats weighing 345 g were used. After a control period, steviol was infused iv at three doses (0.5, 1.0 and 3.0 mg.kg-1/h), according to classical clearance techniques. During all the experiments no significant changes in inulin clearance (Cin) and p-aminohipuric acid clearance (C PAH) were observed. Administration of steviol resulted in a statistically significant increase in the fractional sodium excretion (FeNa+), fractional potassium excretion (FeK+), urinary flow as percent of glomerular filtration rate (V/GFR) and glucose clearance (C G) when compared to controls, but these effects were absent with the dose of 0.5 mg.kg-1/h. The steviol clearance (C S) was higher than the Cin and lower than the C PAH at all the doses employed in this study. The data suggest that steviol is secreted by renal tubular epithelium, causing diuresis, natriuresis, kaliuresis and a fall in renal tubular reabsorption of glucose.
Resumo:
Plant cyanogenesis, the release of cyanide from endogenous cyanide-containing compounds, is an effective herbivore deterrent. This paper characterises cyanogenesis in the Australian tree Eucalyptus polyanthemos Schauer subsp. vestita L. Johnson and K. Hill for the first time. The cyanogenic glucoside prunasin ((R)-mandelonitrile beta-D-glucoside) was determined to be the only cyanogenic compound in E. polyanthemos foliage. Two natural populations of E. polyanthernos showed quantitative variation in foliar prumasin concentration, varying from zero (i.e. acyanogenic) to 2.07 mg CN g(-1) dry weight in one population and from 0.17 to 1.98 mg CN g(-1) dry weight in the other. No significant difference was detected between the populations with respect to the mean prunasin concentration or the degree of variation in foliar prunasin, despite significant differences in foliar nitrogen. Variation between individuals was also observed with respect to the capacity of foliage to catabolise prunasin to form cyanide. Moreover, variation in this capacity generally correlated with the amount of prunasin in the tissue, suggesting genetic linkage between prunasin and beta-glucosidase. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Dissertação de mestrado em Genética Molecular
Resumo:
The objective of this work was to assess the possible transport of cyanogenic glycosides from leaves of rubber tree crown clones (Hevea spp.) resistant to South American leaf blight to the trunk of the panel clones in which they are grafted. The cyanogenic potential (HCNp) of the crown clones was determined in the trunk bark, at different distances from the cambium, and its gradient was evaluated along the trunk. The correlation between the HCNp of the crown leaves and that of the trunk bark was also evaluated. HCNp determined in leaves showed a wide range variation in the species studied as crown clones, with the lowest values registered in H. nitida clones, and the highest ones in H. rigidifolia. In the trunk bark, the tissue layer nearer the cambium showed higher HCNp values. A positive basipetal gradient was observed along the trunk, i.e., there was an increase in HCNp from the apex toward the base. Although the grafted crowns influence the cyanogenic potential of the trunk bark of panel clones, the absence of correlation between the HCNp of the leaves and trunk bark indicates that the crown is not the main source of the cyanogenic glycosides found in the trunk.
Cyanogenic polimorphysm in brackens, Pteridium arachnoideum and P. caudatum, from the northern Andes
Resumo:
Cyanogenesis in Pteridium caudatum and P. arachnoideum has been examined. Samples of the Andes of South America furnished from 0 to 4.63 mg of prunasin g-1 of frond dry weight (dw) in P. caudatum and from 0 to 103 mg of g-1 dw in P. arachnoideum. In both fern species the continuous distribution of prunasin suggested cyanogenic polymorphism. The frequency of cyanogenic morphs was 84.7% for P. caudatum and 98.6% for P. arachnoideum. Cyanogenic activity was highest in the young crozier and waned rapidly with frond growth. The crozier head was found to yield HCN much more than the stipe.
Resumo:
The utility of the nitroaldol reaction for accessing 3-nitro-pyranoside, 3-nitro-septanoside or 4-nitro-septanoside derivatives, by reaction of the anion of nitromethane with glycoside dialdehydes is demonstrated. Initially, the feasibility of using unprotected glucoside dialdehydes was probed for the synthesis of the septanoside products, but this affoided pyranoside rather than septanoside targets. Subsequent studies utilised protected glycoside dialdehydes within the methodology, which allowed entry into a range of 3-nitro or 4-nitro-septanosides in good yield NMR spectroscopic analysis allowed determination of the stereochemistry of each of the products thus afforded.
Resumo:
The isoflavone genistein is found predominantly in soyabeans and is thought to possess various potent biological properties, including anticarcinogenic effects. Studies have shown that genistein is extensively degraded by the human gut microflora, presumably with a loss of its anti-carcinogenic action. The aim of the present study was to investigate the potential of a prebiotic to divert bacterial metabolism away from genistein breakdown: this may be of benefit to the host. Faecal samples were obtained from healthy volunteers and fermented in the presence of a source of soyabean isoflavones (Novasoy(TM) (10 g/l); ADM Neutraceuticals, Erith, Kent, UK). Bacterial genera of the human gut were enumerated using selective agars and genistein was quantified by HPLC. The experiment was repeated with the addition of glucose (10 g/l) or fructo-oligosaccharide (10 g/l; FOS) to the fermentation medium. The results showed most notably that counts of Bifidobacterium spp. and Lactobacillus spp. were significantly increased (P<0.05 and P<0.01 respectively) under steady-state conditions in the presence of FOS. Counts of Bacteroides spp. and Clostridium spp. were, however, both significantly reduced (P<0.05) during the fermentation. A decline in genistein concentration by about 52 and 56% over the 120h culture period was observed with the addition of glucose or FOS to the basal medium (P<0.01), compared with about 91% loss of genistein in the vessels containing Novasoy(TM) (ADM Neutraceuticals) only. Similar trends were obtained using a three-stage chemostat (gut model), in which once again the degradation of genistein was about 22% in vessel one, about 24% in vessel two and about 26% in vessel three in the presence of FOS, compared with a degradation of genistein of about 67% in vessel one, about 95% in vessel two and about 93% in vessel three in the gut model containing Novasoy(TM) (ADM Neutraceuticals) only. The present study has shown that the addition of excess substrate appeared to preserve genistein in vitro. In particular, the use of FOS not only augmented this effect, but also conferred an additional benefit in selectively increasing numbers of purportedly beneficial bacteria such as bifidobacteria and lactobacilli.
Resumo:
Fractionation of the methanol extract of the leaves of Oricia renieri and Oricia suaveolens (Rutaceae) led to the isolation of 13 compounds including the hitherto unknown furoquinoline alkaloid named 6,7-methylenedioxy-5-hydroxy-8-methoxydictamnine (1) and a flavanone glycoside named 5-hydroxy-40-methoxy-7-O-[a-Lrhamnopyranosyl(1000→500)-b-D-apiofuranosyl]-flavanoside (2), together with 11 known compounds (3–13). The structures of the compounds were determined by comprehensive analyses of their 1D and 2D NMR, mass spectral data and comparison. All compounds isolated were examined for their activity against human carcinoma cell lines. The alkaloids 1, 5, 12, 13 and the phenolic 2, 8, 11 tested compounds exhibited non-selective moderate cytotoxic activity with IC50 8.7–15.9mM whereas compounds 3, 4, 6, 7, 9 and 10 showed low activity.
Resumo:
To develop targeted methods for treating bacterial infections, the feasibility of using glycoside derivatives of the antibacterial compound L-R-aminoethylphosphonic acid (L-AEP) has been investigated. These derivatives are hypothesized to be taken up by bacterial cells via carbohydrate uptake mechanisms, and then hydrolysed in situ by bacterial borne glycosidase enzymes, to selectively afford L-AEP. Therefore the synthesis and analysis of ten glycoside derivatives of L-AEP, for selective targeting of specific bacteria, is reported. The ability of these derivatives to inhibit the growth of a panel of Gram-negative bacteria in two different media is discussed. β-Glycosides (12a) and (12b) that contained L-AEP linked to glucose or galactose via a carbamate linkage inhibited growth of a range of organisms with the best MICs being <0.75 mg/ml; for most species the inhibition was closely related to the hydrolysis of the equivalent chromogenic glycosides. This suggests that for (12a) and (12b), release of L-AEP was indeed dependent upon the presence of the respective glycosidase enzyme.
Resumo:
Asthma is a chronic respiratory disease characterized by airway inflammation and airway hyperresponsiveness (AHR). One strategy to treat allergic diseases is the development of new drugs. Flavonoids are compounds derived from plants and are known to have antiallergic, anti-inflammatory, and antioxidant properties. To investigate whether the flavonoid kaempferol glycoside 3-O-[beta-D-glycopiranosil-(1 -> 6)-alpha-L-ramnopiranosil]-7-O-alpha-L-ramnopiranosil-kaempferol (GRRK) would be capable of modulating allergic airway disease (AAD) either as a preventive (GRRK P) or curative (GRRK C) treatment in an experimental model of asthma. At weekly intervals, BALB/c mice were subcutaneously (sc) sensitized twice with ovalbumin (OVA)/alum and challenged twice with OVA administered intranasally. To evaluate any preventive effects GRRK was administered 1 h (hour) before each OVA-sensitization and challenge, while to analyze the curative effects mice were first sensitized with OVA, followed by GRRK given at day 18 through 21. The onset: of AAD was evaluated 24 h after the last OVA challenge. Both treatments resulted in a dose-dependent reduction in total leukocyte and eosinophil counts in the bronchoalveolar lavage fluid (BAL). GRRK also decreased CD4(+), B220(+), MHC class II and CD40 molecule expressions in BAL cells. Histology and lung mechanic showed that GRRK suppressed mucus production and ameliorated the AHR induced by OVA challenge. Furthermore, GRRK impaired Th2 cytokine production (IL-5 and IL-13) and did not induce a Th1 pattern of inflammation. These findings demonstrate that GRRK treatment before or after established allergic lung disease down-regulates key asthmatic features. Therefore. GRRK has a potential clinical use for the treatment of allergic asthma. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The first isocoumarin isolated from the methylene chloride extract of Paepalanthus bromelioides, named paepalantine (isocoumarin 1), was found to have antimicrobial activity; but, it is mutagenic clastogenic and cytotoxic. Two other isocoumarins, paepalantine-9-O-beta-D-glucopyranoside (isocoumarin 2) and paepalantine-9-O-beta-D-allopyranosyl(1-->6) glucopyranoside (isocoumarin 3) were isolated from the ethanolic extract. A fourth new isocoumarin, also isolated from the methylene chloride extract of the capitula of P. bromelioides, was characterized as an 8-8' dimer of paepalantine and denominated isocoumarin 4. The abilities of isocoumarins 2, 3 and 4 to induce mutations in Salmonella typhimurium strains TA97a, TA98, TA100 and TA102 were investigated. Mutagenic activity was observed in strain TA97a treated with isocoumarin 2 in the presence of S9 mixture. The substitution of H at position 9 by glucose or glucose-allose caused reductions in the mutagenic activities of paepalantine, indicating this to be an important site for these properties. (C) 2003 Elsevier Ltd. All rights reserved.