950 resultados para Cu-Al alloys


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal behavior of Cu-Al alloys with 17, 19 and 21 at.%Al was examined by differential thermal analysis (DTA), differential scanning calorimetry (DSC), X-ray diffractometry (XRD), optical microscopy (OM) and scanning electron microscopy (SEM). The presence of the gamma phase (Al4Cu9) was clearly detected for the Cu-19 at.%Al alloy and caused the alpha (2) phase disordering process in two stages. The tendency to increase the alpha (2) dissolution precipitates with the increase in the Al content seems to be reverted for compositions at about 21 at.%Al and the heating/cooling ratio seems to influence the thermal response of this process. The presence of the endothermic peak corresponding to the beta (1)--> beta transformation depends on an incomplete beta decomposition reaction. The variation of the heating rate showed that the beta (1)-->(alpha+gamma (1)) decomposition is the dominant reaction for alloys containing 19 and 21 at.%Al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eutectoid transformation may be defined as a solid-state diffusion-controlled decomposition process of a high-temperature phase into a two-phase lamellar aggregate behind a migrating boundary on cooling below the eutectoid temperature. In substitutional solid solutions, the eutectoid reaction involves diffusion of the solute atoms either through the matrix or along the boundaries or ledges. The effect of Ag on the non-isothermal kinetics of the reverse eutectoid reaction in the Cu-9 mass%Al, Cu-10 mass%Al, and Cu-11 mass%Al alloys were studied using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The activation energy for this reaction was obtained using the Kissinger and Ozawa methods. The results indicated that Ag additions to Cu-Al alloys interfere on the reverse eutectoid reaction, increasing the activation energy values for the Cu-9 mass%Al and Cu-10 mass%Al alloys and decreasing these values for the Cu-11 mass%Al alloy for additions up to 6 mass%Ag. The changes in the activation energy were attributed to changes in the reaction solute and in Ag solubility due to the increase in Al content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical behavior of Cu-xAl alloys, with 11 wt%less than or equal to x less than or equal to 15wt%, in 0.5 M H2SO4 was studied by means of open-circuit potential decay measurements, quasi-stationary and fast cyclic voltammetry, and electrochemical impedance spectroscopy. Some of the alloys (x less than or equal to 14%), when quenched formed martensitic structures. Alloys with greater than or equal to 13% showed a little square-shaped phase when quenched from temperatures around 800 degrees C. It was observed that in sulfuric medium, these formations were dealuminized differently than the martensitic phase. The values of the rest potentials are more influenced by the heat treatment rather than by the alloy composition. An anodic Tafel slope of ca. 60 mV/decade was observed for all the alloys, independently of the heat treatment. This is explained in terms of a competition between two processes: copper oxidation and copper(I) deproportionation. In the cyclic voltammetric experiments it was observed an anodic current peak, related with copper oxidation with a possible formation of some interfacial species, and a cathodic current peak during the reverse potential scan, associated with the reduction of soluble species and/or of the film. The AC Impedance data were interpreted in terms of electric equivalent circuits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification, characterization and stability range of the phases present in a series of Cu-Al alloys, with Al content from 11.0 to 15.0 wt.%, were studied by Differential Thermal Analysis (DTA), Optical Microscopy (OM), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), Auger Electron Spectroscopy (AES), Energy Dispersive X-Ray Spectroscopy (EDX) and X-Ray Diffraction (XRD). In some alloys and in a temperature range from 790 degrees C to 850 degrees C the presence of black spots exhibiting regular shapes and an homogeneous distribution was noticed through metallographic microscopy. Data from TEM and AES indicate that these spots are made of two monocrystalline phases having different Al contents and a crystallographic orientation relationship. (C) 1998 Elsevier B.V. S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of Ag addition on the phase transformations that occur in the Cu-10% Al alloy was studied using differential thermal analysis, scanning electron and optical microscopies and energy dispersive X-ray analysis. The results indicated that Ag addition is responsible for the separation of the reverse martensitic transformation in two stages, and for the refinement of the α-phase grains. The relative amount of the β1 martensitic phase, retained on slow cooling (above 2 K min-1 of cooling rate), and the relative fraction of phase α2 are increased. The solubility limit of Ag in the matrix is close to 6 mass% and at this concentration the maximum stability of the β-phase is reached. © 2005 Akadémiai Kiadó, Budapest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To quantify the vibrational anharmonicity of the long-wavelength acoustic modes of bcc Cu74.1Al23.1Be2.8 near its martensitic transition temperature Ms (261 K), the hydrostatic pressure derivatives (¿CIJ/¿P)P=0 of the elastic stiffness moduli have been measured. The Grüneisen parameters at 268 K (just above Ms), especially of longitudinal modes, which become smaller than those of the shear modes, are quite different from those at 295 K: the anharmonicity changes markedly in the vicinity of the transition. Similar trends are noted for Cu66.5Al12.7Zn20.8. Experimental data near Ms are used to estimate cubic invariants in the strain order parameters in a Landau formalism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neutron-scattering techniques have been used to study the premartensitic state of a family of Cu-Al-Be alloys, which transform from the bcc phase to an 18R martensitic structure. We find that the phonon modes of the TA2[110] branch have very low energies with anomalous temperature dependence. A slight anomaly at q=2/3 was observed; this anomaly, however, does not change significantly with temperature. No elastic peaks, related to the martensite structure, were found in the premartensitic state of these alloys. The results are compared with measurements, performed under the same instrumental conditions, on two Cu-Al-Ni and a Cu-Zn-Al martensitic alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have measured the adiabatic elastic constants of two Cu-Al-Ni martensitic alloys using ultrasonic methods and we have compared the results to recent neutron-scattering experiments. It is shown that the elastic behavior of Cu-Al-Ni alloys follows the same trends exhibited by other Cu-based alloys; in particular, the TA2 long-wavelength acoustic modes are softer than all other modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of the entropy change at the martensitic transition of two composition-related sets of Cu-Al-Mn shape-memory alloys are reported. It is found that most of the entropy change has a vibrational origin, and depends only on the particular close-packed structure of the low-temperature phase. Using data from the literature for other Cu-based alloys, this result is shown to be general. In addition, it is shown that the martensitic structure changes from 18R to 2H when the ratio of conduction electrons per atom reaches the same value as the eutectoid point in the equilibrium phase diagram. This finding indicates that the structure of the metastable low-temperature phase is reminiscent of the equilibrium structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of magnetic hysteresis loops in Cu-Al-Mn alloys of different Mn content at low temperatures are presented. The loops are smooth and continuous above a certain temperature, but exhibit a magnetization discontinuity below that temperature. Scaling analysis suggest that this system displays a disorder-induced phase transition line. Measurements allow one to determine the critical exponents ß=0.03±0.01 and ß¿=0.4±0.1, which coincide with those reported recently in a different system, thus supporting the existence of universality for disorder-induced critical points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the effect of a magnetic field on the martensitic transition of a Cu-Al-Mn shape-memory alloy. The martensitic transition has been studied through resistance measurements under applied magnetic fields ranging from 0 to 50 kOe. Negative magnetoresistance showing an almost linear dependence with the square of the magnetization has been observed. This magnetoresistive effect is associated with the existence of small ferromagnetic Mn-clusters. Its strength and thermal dependence is different in both phases. The martensitic transition temperature is slightly increased and its spread in temperature significantly reduced upon increasing the field. These results show the existence of magnetoelastic coupling, which favors the nucleation of those martensitic variants with the easy magnetization axis aligned with the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the effect of a magnetic field on the martensitic transition of a Cu-Al-Mn shape-memory alloy. The martensitic transition has been studied through resistance measurements under applied magnetic fields ranging from 0 to 50 kOe. Negative magnetoresistance showing an almost linear dependence with the square of the magnetization has been observed. This magnetoresistive effect is associated with the existence of small ferromagnetic Mn-clusters. Its strength and thermal dependence is different in both phases. The martensitic transition temperature is slightly increased and its spread in temperature significantly reduced upon increasing the field. These results show the existence of magnetoelastic coupling, which favors the nucleation of those martensitic variants with the easy magnetization axis aligned with the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the Al content on the phase transformations in Cu-Al-Ag alloys was studied by classical differential thermal analysis (DTA), optical microscopy (OM) and X-ray diffractometry (XRD). The results indicated that the increase in the Al content and the presence of Ag decrease the rate of the b1 phase decomposition reaction and contribute for the raise of this transition temperature, thus decreasing the stability range of the perlitic phase resulted from the b1 decomposition reaction.