977 resultados para Covariance matrix estimation
Resumo:
Tutkimus keskittyy kansainväliseen hajauttamiseen suomalaisen sijoittajan näkökulmasta. Tutkimuksen toinen tavoite on selvittää tehostavatko uudet kovarianssimatriisiestimaattorit minimivarianssiportfolion optimointiprosessia. Tavallisen otoskovarianssimatriisin lisäksi optimoinnissa käytetään kahta kutistusestimaattoria ja joustavaa monimuuttuja-GARCH(1,1)-mallia. Tutkimusaineisto koostuu Dow Jonesin toimialaindekseistä ja OMX-H:n portfolioindeksistä. Kansainvälinen hajautusstrategia on toteutettu käyttäen toimialalähestymistapaa ja portfoliota optimoidaan käyttäen kahtatoista komponenttia. Tutkimusaieisto kattaa vuodet 1996-2005 eli 120 kuukausittaista havaintoa. Muodostettujen portfolioiden suorituskykyä mitataan Sharpen indeksillä. Tutkimustulosten mukaan kansainvälisesti hajautettujen investointien ja kotimaisen portfolion riskikorjattujen tuottojen välillä ei ole tilastollisesti merkitsevää eroa. Myöskään uusien kovarianssimatriisiestimaattoreiden käytöstä ei synnytilastollisesti merkitsevää lisäarvoa verrattuna otoskovarianssimatrisiin perustuvaan portfolion optimointiin.
Resumo:
This paper proposes to estimate the covariance matrix of stock returnsby an optimally weighted average of two existing estimators: the samplecovariance matrix and single-index covariance matrix. This method isgenerally known as shrinkage, and it is standard in decision theory andin empirical Bayesian statistics. Our shrinkage estimator can be seenas a way to account for extra-market covariance without having to specifyan arbitrary multi-factor structure. For NYSE and AMEX stock returns from1972 to 1995, it can be used to select portfolios with significantly lowerout-of-sample variance than a set of existing estimators, includingmulti-factor models.
Resumo:
The heteroskedasticity-consistent covariance matrix estimator proposed by White (1980), also known as HC0, is commonly used in practical applications and is implemented into a number of statistical software. Cribari–Neto, Ferrari & Cordeiro (2000) have developed a bias-adjustment scheme that delivers bias-corrected White estimators. There are several variants of the original White estimator that also commonly used by practitioners. These include the HC1, HC2 and HC3 estimators, which have proven to have superior small-sample behavior relative to White’s estimator. This paper defines a general bias-correction mechamism that can be applied not only to White’s estimator, but to variants of this estimator as well, such as HC1, HC2 and HC3. Numerical evidence on the usefulness of the proposed corrections is also presented. Overall, the results favor the sequence of improved HC2 estimators.
Resumo:
8 pages, 2 figures, to be published in the conference proceedings of 11th international conference "Computer Data Analysis & Modeling 2016"
Resumo:
The central message of this paper is that nobody should be using the samplecovariance matrix for the purpose of portfolio optimization. It containsestimation error of the kind most likely to perturb a mean-varianceoptimizer. In its place, we suggest using the matrix obtained from thesample covariance matrix through a transformation called shrinkage. Thistends to pull the most extreme coefficients towards more central values,thereby systematically reducing estimation error where it matters most.Statistically, the challenge is to know the optimal shrinkage intensity,and we give the formula for that. Without changing any other step in theportfolio optimization process, we show on actual stock market data thatshrinkage reduces tracking error relative to a benchmark index, andsubstantially increases the realized information ratio of the activeportfolio manager.
Resumo:
The Birnbaum-Saunders regression model is commonly used in reliability studies. We derive a simple matrix formula for second-order covariances of maximum-likelihood estimators in this class of models. The formula is quite suitable for computer implementation, since it involves only simple operations on matrices and vectors. Some simulation results show that the second-order covariances can be quite pronounced in small to moderate sample sizes. We also present empirical applications.
Resumo:
Determining the dimensionality of G provides an important perspective on the genetic basis of a multivariate suite of traits. Since the introduction of Fisher's geometric model, the number of genetically independent traits underlying a set of functionally related phenotypic traits has been recognized as an important factor influencing the response to selection. Here, we show how the effective dimensionality of G can be established, using a method for the determination of the dimensionality of the effect space from a multivariate general linear model introduced by AMEMIYA (1985). We compare this approach with two other available methods, factor-analytic modeling and bootstrapping, using a half-sib experiment that estimated G for eight cuticular hydrocarbons of Drosophila serrata. In our example, eight pheromone traits were shown to be adequately represented by only two underlying genetic dimensions by Amemiya's approach and factor-analytic modeling of the covariance structure at the sire level. In, contrast, bootstrapping identified four dimensions with significant genetic variance. A simulation study indicated that while the performance of Amemiya's method was more sensitive to power constraints, it performed as well or better than factor-analytic modeling in correctly identifying the original genetic dimensions at moderate to high levels of heritability. The bootstrap approach consistently overestimated the number of dimensions in all cases and performed less well than Amemiya's method at subspace recovery.
Resumo:
For modern consumer cameras often approximate calibration data is available, making applications such as 3D reconstruction or photo registration easier as compared to the pure uncalibrated setting. In this paper we address the setting with calibrateduncalibrated image pairs: for one image intrinsic parameters are assumed to be known, whereas the second view has unknown distortion and calibration parameters. This situation arises e.g. when one would like to register archive imagery to recently taken photos. A commonly adopted strategy for determining epipolar geometry is based on feature matching and minimal solvers inside a RANSAC framework. However, only very few existing solutions apply to the calibrated-uncalibrated setting. We propose a simple and numerically stable two-step scheme to first estimate radial distortion parameters and subsequently the focal length using novel solvers. We demonstrate the performance on synthetic and real datasets.
Resumo:
We propose a blind method to detect interference in GNSS signals whereby the algorithms do not require knowledge of the interference or channel noise features. A sample covariance matrix is constructed from the received signal and its eigenvalues are computed. The generalized likelihood ratio test (GLRT) and the condition number test (CNT) are developed and compared in the detection of sinusoidal and chirp jamming signals. A computationally-efficient decision threshold was proposed for the CNT.
Resumo:
Epipolar geometry is a key point in computer vision and the fundamental matrix estimation is the only way to compute it. This article surveys several methods of fundamental matrix estimation which have been classified into linear methods, iterative methods and robust methods. All of these methods have been programmed and their accuracy analysed using real images. A summary, accompanied with experimental results, is given
Resumo:
This paper analyzes whether standard covariance matrix tests work whendimensionality is large, and in particular larger than sample size. Inthe latter case, the singularity of the sample covariance matrix makeslikelihood ratio tests degenerate, but other tests based on quadraticforms of sample covariance matrix eigenvalues remain well-defined. Westudy the consistency property and limiting distribution of these testsas dimensionality and sample size go to infinity together, with theirratio converging to a finite non-zero limit. We find that the existingtest for sphericity is robust against high dimensionality, but not thetest for equality of the covariance matrix to a given matrix. For thelatter test, we develop a new correction to the existing test statisticthat makes it robust against high dimensionality.
Resumo:
En este artículo, a partir de la inversa de la matriz de varianzas y covarianzas se obtiene el modelo Esperanza-Varianza de Markowitz siguiendo un camino más corto y matemáticamente riguroso. También se obtiene la ecuación de equilibrio del CAPM de Sharpe.
Resumo:
En este artículo, a partir de la inversa de la matriz de varianzas y covarianzas se obtiene el modelo Esperanza-Varianza de Markowitz siguiendo un camino más corto y matemáticamente riguroso. También se obtiene la ecuación de equilibrio del CAPM de Sharpe.