945 resultados para Coupling and Integration of Hydrologic Models II


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Existing distributed hydrologic models are complex and computationally demanding for using as a rapid-forecasting policy-decision tool, or even as a class-room educational tool. In addition, platform dependence, specific input/output data structures and non-dynamic data-interaction with pluggable software components inside the existing proprietary frameworks make these models restrictive only to the specialized user groups. RWater is a web-based hydrologic analysis and modeling framework that utilizes the commonly used R software within the HUBzero cyber infrastructure of Purdue University. RWater is designed as an integrated framework for distributed hydrologic simulation, along with subsequent parameter optimization and visualization schemes. RWater provides platform independent web-based interface, flexible data integration capacity, grid-based simulations, and user-extensibility. RWater uses RStudio to simulate hydrologic processes on raster based data obtained through conventional GIS pre-processing. The program integrates Shuffled Complex Evolution (SCE) algorithm for parameter optimization. Moreover, RWater enables users to produce different descriptive statistics and visualization of the outputs at different temporal resolutions. The applicability of RWater will be demonstrated by application on two watersheds in Indiana for multiple rainfall events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this doctoral research is to investigate the internal frost damage due to crystallization pore pressure in porous cement-based materials by developing computational and experimental characterization tools. As an essential component of the U.S. infrastructure system, the durability of concrete has significant impact on maintenance costs. In cold climates, freeze-thaw damage is a major issue affecting the durability of concrete. The deleterious effects of the freeze-thaw cycle depend on the microscale characteristics of concrete such as the pore sizes and the pore distribution, as well as the environmental conditions. Recent theories attribute internal frost damage of concrete is caused by crystallization pore pressure in the cold environment. The pore structures have significant impact on freeze-thaw durability of cement/concrete samples. The scanning electron microscope (SEM) and transmission X-ray microscopy (TXM) techniques were applied to characterize freeze-thaw damage within pore structure. In the microscale pore system, the crystallization pressures at sub-cooling temperatures were calculated using interface energy balance with thermodynamic analysis. The multi-phase Extended Finite Element Modeling (XFEM) and bilinear Cohesive Zone Modeling (CZM) were developed to simulate the internal frost damage of heterogeneous cement-based material samples. The fracture simulation with these two techniques were validated by comparing the predicted fracture behavior with the captured damage from compact tension (CT) and single-edge notched beam (SEB) bending tests. The study applied the developed computational tools to simulate the internal frost damage caused by ice crystallization with the two dimensional (2-D) SEM and three dimensional (3-D) reconstructed SEM and TXM digital samples. The pore pressure calculated from thermodynamic analysis was input for model simulation. The 2-D and 3-D bilinear CZM predicted the crack initiation and propagation within cement paste microstructure. The favorably predicted crack paths in concrete/cement samples indicate the developed bilinear CZM techniques have the ability to capture crack nucleation and propagation in cement-based material samples with multiphase and associated interface. By comparing the computational prediction with the actual damaged samples, it also indicates that the ice crystallization pressure is the main mechanism for the internal frost damage in cementitious materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MEG directly measures the neuronal events and has greater temporal resolution than fMRI, which has limited temporal resolution mainly due to the larger timescale of the hemodynamic response. On the other hand fMRI has advantages in spatial resolution, while the localization results with MEG can be ambiguous due to the non-uniqueness of the electromagnetic inverse problem. Thus, these methods could provide complementary information and could be used to create both spatially and temporally accurate models of brain function. We investigated the degree of overlap, revealed by the two imaging methods, in areas involved in sensory or motor processing in healthy subjects and neurosurgical patients. Furthermore, we used the spatial information from fMRI to construct a spatiotemporal model of the MEG data in order to investigate the sensorimotor system and to create a spatiotemporal model of its function. We compared the localization results from the MEG and fMRI with invasive electrophysiological cortical mapping. We used a recently introduced method, contextual clustering, for hypothesis testing of fMRI data and assessed the the effect of neighbourhood information use on the reproducibility of fMRI results. Using MEG, we identified the ipsilateral primary sensorimotor cortex (SMI) as a novel source area contributing to the somatosensory evoked fields (SEF) to median nerve stimulation. Using combined MEG and fMRI measurements we found that two separate areas in the lateral fissure may be the generators for the SEF responses from the secondary somatosensory cortex region. The two imaging methods indicated activation in corresponding locations. By using complementary information from MEG and fMRI we established a spatiotemporal model of somatosensory cortical processing. This spatiotemporal model of cerebral activity was in good agreement with results from several studies using invasive electrophysiological measurements and with anatomical studies in monkey and man concerning the connections between somatosensory areas. In neurosurgical patients, the MEG dipole model turned out to be more reliable than fMRI in the identification of the central sulcus. This was due to prominent activation in non-primary areas in fMRI, which in some cases led to erroneous or ambiguous localization of the central sulcus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geographic information systems (GIS) are now widely applied in coastal resource management. Their ability to organise and interface information from a large range of public and private data sources, and their ability to combine this information, using management criteria, to develop a comprehensive picture of the system explains the success of GIS in this area. The use of numerical models as a tool to improve coastal management is also widespread. Less usual is a GIS-based management to ol implementing a comprehensive management model and integrating a numerical modelling system into itself. In this paper such a methodology is proposed. A GIS-based management tool based on the DPSIR model is presented. An overview of the MOHID numerical modelling system is given and the method of integrating this model in the management tool is described. This system is applied to the Sado Estuary (Portugal). Some preliminary results of the integration are presented, demonstrating the capabilities of the management system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report, we describe the microfabrication and integration of planar electrodes for contactless conductivity detection on polyester-toner (PT) electrophoresis microchips using toner masks. Planar electrodes were fabricated by three simple steps: (i) drawing and laser-printing the electrode geometry on polyester films, (ii) sputtering deposition onto substrates, and (iii) removal of toner layer by a lift-off process. The polyester film with anchored electrodes was integrated to PT electrophoresis microchannels by lamination at 120 degrees C in less than 1 min. The electrodes were designed in an antiparallel configuration with 750 mu m width and 750 gm gap between them. The best results were recorded with a frequency of 400 kHz and 10 V-PP using a sinusoidal wave. The analytical performance of the proposed microchip was evaluated by electrophoretic separation of potassium, sodium and lithium in 150 mu m wide x 6 mu m deep microchannels. Under an electric field of 250 V/cm the analytes were successfully separated in less than 90 s with efficiencies ranging from 7000 to 13 000 plates. The detection limits (S/N = 3) found for K+, Na+, and Li+ were 3.1, 4.3, and 7.2 mu mol/L, respectively. Besides the low-cost and instrumental simplicity, the integrated PT chip eliminates the problem of manual alignment and gluing of the electrodes, permitting more robustness and better reproducibility, therefore, more suitable for mass production of electrophoresis microchips.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex genetic models and segregation analysis were applied to family data obtained in a hyperendemic goiter area in Brazil. The single locus and Falconer's models did not fit the data. Edward's model showed convergency, but statistical concordance has not been obtained. Although the genetic load model explains statistically the family data, it would be hard to imagine that endemic goiter could be explained by a model where synergism among genetic and environmental factors is not assumed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With advances in the synthesis and design of chemical processes there is an increasing need for more complex mathematical models with which to screen the alternatives that constitute accurate and reliable process models. Despite the wide availability of sophisticated tools for simulation, optimization and synthesis of chemical processes, the user is frequently interested in using the ‘best available model’. However, in practice, these models are usually little more than a black box with a rigid input–output structure. In this paper we propose to tackle all these models using generalized disjunctive programming to capture the numerical characteristics of each model (in equation form, modular, noisy, etc.) and to deal with each of them according to their individual characteristics. The result is a hybrid modular–equation based approach that allows synthesizing complex processes using different models in a robust and reliable way. The capabilities of the proposed approach are discussed with a case study: the design of a utility system power plant that has been decomposed into its constitutive elements, each treated differently numerically. And finally, numerical results and conclusions are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research sought to determine the implications of a non-traded differentiated commodity produced with increasing returns to scale, for the welfare of countries that allowed free international migration. We developed two- and three-country Ricardian models in which labor was the only factor of production. The countries traded freely in homogeneous goods produced with constant returns to scale. Each also had a non-traded differentiated good sector where production took place using increasing returns to scale technology. Then we allowed for free international migration between two of the countries and observed what happened to welfare in both countries as indicated by their per capita utilities in the new equilibrium relative to their pre-migration utilities. ^ Preferences of consumers were represented by a two-tier utility function [Dixit and Stiglitz 1977]. As migration took place it impacted utility in two ways. The expanding country enjoyed the positive effect of increased product diversity in the non-traded good sector. However, it also suffered adverse terms-of-trade as its production cost declined. The converse was true for the contracting country. To determine the net impact on welfare we derived indirect per capita utility functions of the countries algebraically and graphically. Then we juxtaposed the graphs of the utility functions to obtain possible general equilibria. These we used to observe the welfare outcomes. ^ We found that the most likely outcomes were either that both countries gained, or one country lost while the other gained. We were, however, able to generate cases where both countries lost as a result of allowing free inter-country migration. This was most likely to happen when the shares of income spent on each country's export good differed significantly. In the three country world when we allowed two of the countries to engage in preferential trading arrangements while imposing a prohibitive tariff on imports from the third country welfare of the partner countries declined. When inter-union migration was permitted welfare declined even further. This we showed was due to the presence of the non-traded good sector. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We advance the proposition that dynamic stochastic general equilibrium (DSGE) models should not only be estimated and evaluated with full information methods. These require that the complete system of equations be specified properly. Some limited information analysis, which focuses upon specific equations, is therefore likely to be a useful complement to full system analysis. Two major problems occur when implementing limited information methods. These are the presence of forward-looking expectations in the system as well as unobservable non-stationary variables. We present methods for dealing with both of these difficulties, and illustrate the interaction between full and limited information methods using a well-known model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are many use cases in business process management that require the comparison of behavioral models. For instance, verifying equivalence is the basis for assessing whether a technical workflow correctly implements a business process, or whether a process realization conforms to a reference process. This paper proposes an equivalence relation for models that describe behaviors based on the concurrency semantics of net theory and for which an alignment relation has been defined. This equivalence, called isotactics, preserves the level of concurrency of aligned operations. Furthermore, we elaborate on the conditions under which an alignment relation can be classified as an abstraction. Finally, we show that alignment relations induced by structural refinements of behavioral models are indeed behavioral abstractions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2012, Queensland University of Technology (QUT) committed to the massive project of revitalizing its Bachelor of Science (ST01) degree. Like most universities in Australia, QUT has begun work to align all courses by 2015 to the requirements of the updated Australian Qualifications Framework (AQF) which is regulated by the Tertiary Education Quality and Standards Agency (TEQSA). From the very start of the redesigned degree program, students approach scientific study with an exciting mix of theory and highly topical real world examples through their chosen “grand challenge.” These challenges, Fukushima and nuclear energy for example, are the lenses used to explore science and lead to 21st century learning outcomes for students. For the teaching and learning support staff, our grand challenge is to expose all science students to multidisciplinary content with a strong emphasis on embedding information literacies into the curriculum. With ST01, QUT is taking the initiative to rethink not only content but how units are delivered and even how we work together between the faculty, the library and learning and teaching support. This was the desired outcome but as we move from design to implementation, has this goal been achieved? A main component of the new degree is to ensure scaffolding of information literacy skills throughout the entirety of the three year course. However, with the strong focus on problem-based learning and group work skills, many issues arise both for students and lecturers. A move away from a traditional lecture style is necessary but impacts on academics’ workload and comfort levels. Therefore, academics in collaboration with librarians and other learning support staff must draw on each others’ expertise to work together to ensure pedagogy, assessments and targeted classroom activities are mapped within and between units. This partnership can counteract the tendency of isolated, unsupported academics to concentrate on day-to-day teaching at the expense of consistency between units and big picture objectives. Support staff may have a more holistic view of a course or degree than coordinators of individual units, making communication and truly collaborative planning even more critical. As well, due to staffing time pressures, design and delivery of new curriculum is generally done quickly with no option for the designers to stop and reflect on the experience and outcomes. It is vital we take this unique opportunity to closely examine what QUT has and hasn’t achieved to be able to recommend a better way forward. This presentation will discuss these important issues and stumbling blocks, to provide a set of best practice guidelines for QUT and other institutions. The aim is to help improve collaboration within the university, as well as to maximize students’ ability to put information literacy skills into action. As our students embark on their own grand challenges, we must challenge ourselves to honestly assess our own work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteochondral grafts are common treatment options for joint focal defects due to their excellent functionality. However, the difficulty is matching the topography of host and graft(s) surfaces flush to one another. Incongruence could lead to disintegration particularly when the gap reaches subchondoral region. The aim of this study is therefore to investigate cell response to gap geometry when forming cartilage-cartilage bridge at the interface. The question is what would be the characteristics of such a gap if the cells could bridge across to fuse the edges? To answer this, osteochondral plugs devoid of host cells were prepared through enzymatic decellularization and artificial clefts of different sizes were created on the cartilage surface using laser ablation. High density pellets of heterologous chondrocytes were seeded on the defects and cultured with chondrogenic differentiation media for 35 days. The results showed that the behavior of chondrocytes was a function of gap topography. Depending on the distance of the edges two types of responses were generated. Resident cells surrounding distant edges demonstrated superficial attachment to one side whereas clefts of 150 to 250 µm width experienced cell migration and anchorage across the interface. The infiltration of chondrocytes into the gaps provided extra space for their proliferation and laying matrix; as the result faster filling of the initial void space was observed. On the other hand, distant and fit edges created an incomplete healing response due to the limited ability of differentiated chondrocytes to migrate and incorporate within the interface. It seems that the initial condition of the defects and the curvature profile of the adjacent edges were the prime determinants of the quality of repair; however, further studies to reveal the underlying mechanisms of cells adapting to and modifying the new environment would be of particular interest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review examines the multiple levels of pre-existing immunity in the upper and lower female reproductive tract. In addition, we highlight the need for further research of innate and adaptive immune protection of mucosal surfaces in the female reproductive tract. Innate mechanisms include the mucus lining, a tight epithelial barrier and the secretion of antimicrobial peptides and cytokines by epithelial and innate immune cells. Stimulation of the innate immune system also serves to bridge the adaptive arm resulting in the generation of pathogen-specific humoral and cell-mediated immunity. Less understood are the multiple components that act in a coordinated way to provide a network of ongoing protection. Innate and adaptive immunity in the human female reproductive tract are influenced by the stage of menstrual cycle and are directly regulated by the sex steroid hormones, progesterone and estradiol. Furthermore, the effect of hormones on immunity is mediated both directly on immune and epithelial cells and indirectly by stimulating growth factor secretion from stromal cells. The goal of this review is to focus on the diverse aspects of the innate and adaptive immune systems that contribute to a unique network of protection throughout the female reproductive tract.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The introduction of Patient Group Directions (PGD) has changed significantly the way in which nurses can now administer prescription only medicines as a one-off for patients requiring this level of service. PGD’s are a written authority to administer drugs to patients that are not identified at the time of treatment. Aim: The aim of this project was to develop a PGD for use within an Outreach team to administer colloid boluses to patients presenting with hypovolemia. Method: Using a case exemplar this paper will discuss the development of a PGD using aspects of transitional change theory to highlight the potential barriers that were encountered. Implications for Practice: The implications for this PGD are wide reaching. First it now enables members from the nursing Outreach team to administer colloid fluid boluses to a prescribed patient cohort without the need for prescription. Second, it ensures the deteriorating patient has interventions initiated in a timely and appropriate manner to reduce inadvertent admission to high care areas. Last, it will improve inter-professional team-working and communication so much so that collaborative patient care reduces health costs and identifies earlier those patients requiring substantially greater nursing and medical input. Conclusion: The experience of developing a working PGD for fluid administration has meant that the Outreach team is able to respond to patients in a more effective way. In addition, it is the experience of developing this PGD that has enabled the team to contemplate other PGD’s in the execution of Outreach work.