771 resultados para Cornea - Úlceras
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To evaluate the clinical application of implant of the canine cryopreserved amniotic membrane (DMEM plus DMSO 1:1) and 360° conjunctival flap in the treatment of progressive corneal ulceration. 10 dogs of the different breeds, males and females, aging four months to four years old with deep corneal ulceration and different clinical progression were divided in two groups: G1=360° conjunctival graft (n=5) and G2=implant of amniotic membrane, sutured at the edge of the ulcer with epithelial side facing up, associated with the third eyelid flap (n=5). The comparative analysis between groups was: complications, blepharospasm, ocular secretion, corneal vascularization, epithelial defect and corneal opacification in six moments (first emergency care, surgery and 3, 7, 15 and 30 days of postoperative). Without epithelial defect was evaluated quality of the scar. It was used score scale for subjective to qualify of the ocular signs. In G1, it was observed the non-adherence of the conjunctival graft to the ulcer (n=2), dehiscence of the suture (n=2), anterior synechia (n=2) and intense chemosis (n=1). In G2, it was not observed these complications. It was not significant difference between the groups to others ocular parameters, but it was different among the start and end moments of the same groups (ocular secretion, corneal vascularization, epithelial defect). The corneal opacity was more intense in G1. According to the clinical results, the cryopreserved amniotic membrane implant proved to be as effective in the corneal ulceration in comparison to the 360° conjunctival flap, because probably, the membrane promoted a trophic support for epithelialization, anti-inflamatory effect associated with important to the end result phenotype.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
PURPOSE: The ability to predict and understand which biomechanical properties of the cornea are responsible for the stability or progression of keratoconus may be an important clinical and surgical tool for the eye-care professional. We have developed a finite element model of the cornea, that tries to predicts keratoconus-like behavior and its evolution based on material properties of the corneal tissue. METHODS: Corneal material properties were modeled using bibliographic data and corneal topography was based on literature values from a schematic eye model. Commercial software was used to simulate mechanical and surface properties when the cornea was subject to different local parameters, such as elasticity. RESULTS: The simulation has shown that, depending on the corneal initial surface shape, changes in local material properties and also different intraocular pressures values induce a localized protuberance and increase in curvature when compared to the remaining portion of the cornea. CONCLUSIONS: This technique provides a quantitative and accurate approach to the problem of understanding the biomechanical nature of keratoconus. The implemented model has shown that changes in local material properties of the cornea and intraocular pressure are intrinsically related to keratoconus pathology and its shape/curvature.
Resumo:
Background/Aims: It is a challenge to adapt traditional in vitro diffusion experiments to ocular tissue. Thus, the aim of this work was to present experimental evidence on the integrity of the porcine cornea, barrier function and maintenance of electrical properties for 6 h of experiment when the tissue is mounted on an inexpensive and easy-to-use in vitro model for ocular iontophoresis. Methods: A modified Franz diffusion cell containing two ports for the insertion of the electrodes and a receiving compartment that does not need gassing with carbogen was used in the studies. Corneal electron transmission microscopy images were obtained, and diffusion experiments with fluorescent markers were performed to examine the integrity of the barrier function. The preservation of the negatively charged corneal epithelium was verified by the determination of the electro-osmotic flow of a hydrophilic and non-ionized molecule. Results: The diffusion cell was able to maintain the temperature, homogenization, porcine epithelial corneal structure integrity, barrier function and electrical characteristics throughout the 6 h of permeation experiment, without requiring CO(2) gassing when the receiving chamber was filled with 25 m M of HEPES buffer solution. Conclusion: The system described here is inexpensive, easy to handle and reliable as an in vitro model for iontophoretic ocular delivery studies. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
The corneal structure of three deep-sea species of teleosts (Gadiformes, Teleostei) from different depths (250-4000 m) and photic zones are examined at the level of the light and electron microscopes. Each species shows a similar but complex arrangement of layers with a cornea split into dermal and scleral components. The dermal cornea comprises an epithelium overlying a basement membrane and a dermal stroma with sutures and occasional keratocytes. Nezumia aequalis is the only species to possess a Bowman's layer, although it is not well-developed. The scleral cornea is separated from the dermal cornea by a mucoid layer and, in contrast to shallow-water species, is divided into three main layers; an anterior scleral stroma, a middle or iridescent layer and a posterior scleral stroma. The iridescent layer of collagen and intercalated cells or cellular processes is bounded by a layer of cells and the posterior scleral stroma overlies a Descemet's membrane and an endothelium. In the relatively shallow-water Microgadus proximus, the keratocytes of the dermal stroma, the cells of the iridescent layer and the endothelial cells all contain aligned endoplasmic reticulum, which may elicit an iridescent reflex. No alignment of the endoplasmic reticulum was found in N. aequalis or Coryphanoides (Nematonurus) armatus. The relative differences between shallow-water and deep-sea corneas are discussed in relation to the constraints of light, depth and temperature.
Resumo:
Animal studies in mice, rats, rabbits, pigs and hens demonstrated that anterior keratocytes undergo programmed cell death or apoptosis after corneal epithelial injury. Many other wound healing changes subsequently follow the keratocyte apoptosis response. This study evaluated early keratocyte apoptosis after corneal epithelial scrape injury in human eyes scheduled for enucleation for malignancy. Two eyes had corneal epithelial scrape 1 h prior to the enucleation and another eye served as a control and had no corneal scrape prior to enucleation. One additional eye was enucleated, washed with balanced salt solution, and then had the corneal epithelium scraped 1 h prior to processing for analysis. Apoptosis was identified by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay and confirmed by transmission electron microscopy (TEM). Anterior keratocyte apoptosis was detected in the three corneas that had epithelial scrape injury, but not in the control unwounded cornea. This study confirmed that keratocyte apoptosis is also an early response to corneal epithelial injury in humans and showed that tears are not essential for keratocyte apoptosis to occur in response to epithelial injury. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this study was to determine whether myofibroblasts or other cells in the stroma in the cornea produce interleukin (IL)-1 alpha or IL-1 beta that could modulate myofibroblast viability in corneas with haze after photorefractive keratectomy (PRK). Twenty-four female rabbits had haze-generating PRK for 9 diopters of myopia and were sacrificed at 1 week, 2 weeks, 3 weeks or 4 weeks after surgery. Corneal rims were removed, frozen in OCT at -80 degrees C, and analyzed by immunocytochemistry using primary antibodies to IL-1 alpha, IL-1 beta and alpha smooth muscle actin (SMA). Double immunostaining was performed for the co-localization of SMA with IL-1 alpha or IL-1 beta. Central dense haze and peripheral slight haze regions of each cornea were analyzed. SMA+ cells that expressed IL-1 alpha protein were detected in both regions of the corneas at most time points following PRK. However, in the haze region at the 1,3 and 4 week time points, significantly more (p < 0.01) SMA cells did not express IL-1 alpha. Also, in the haze region at all three time points, significantly more (p < 0.01) SMA- cells than SMA+ cells expressed interleukin-1 alpha protein. IL-1 beta expression patterns in SMA+ and SMA- stromal cells was similar to that of IL-1 alpha after PRK. Previous studies have demonstrated that IL-1 alpha or IL-1 beta triggers myofibroblast apoptosis in vitro, depending on the available concentration of apoptosis-suppressive TGFO. This study demonstrates that SMA- cells such as corneal fibroblasts, keratocytes, or inflammatory cells may produce IL-1 alpha and/or IL-1 beta that could act in paracrine fashion to regulate myofibroblast apoptosis-especially in the region where there is haze in the cornea after PRK was performed and SMA+ myofibroblasts are present at higher density. However, some SMA+ myofibroblasts themselves produce IL-1 alpha and/or IL-1 beta, suggesting that myofibroblast viability could also be regulated via autocrine mechanisms. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Interleukin (IL)-1 alpha and beta are important modulators of many functions of corneal epithelial and stromal cells that occur following injury to the cornea, including the influx of bone marrow-derived inflammatory cells into the stroma attracted by chemokines released from the stroma and epithelium. In this study, we examined the effect of topical soluble IL-1 receptor antagonist on bone marrow-derived cell influx following corneal epithelial scrape injury in a mouse model. C57BL/6 mice underwent corneal epithelial scrape followed by application of IL-1 receptor antagonist (Amgen, Thousand Oaks, CA) at a concentration of 20 mg/ml or vehicle for 24 h prior to immunocytochemical detection of marker CD11b-positive cells into the stroma. In two experiments, topical IL-1 receptor antagonist had a marked effect in blocking cell influx. For example, in experiment 1, topical IL-1 receptor antagonist markedly reduced detectible CD11b-positive cells into the corneal stroma at 24 It after epithelial injury compared with the vehicle control (3.5 +/- 0.5 (standard error of the mean) cells/400x field and 13.9 +/- 1.2 cells/400x field, respectively, p < 0.01). A second experiment with a different observer performing cell counting had the same result. Thus, the data demonstrate conclusively that topical IL-1 receptor antagonist markedly down-regulates CD-11b-positive monocytic cell appearance in the corneal stroma. Topical IL-1 receptor antagonist could be an effective adjuvant for clinical treatment of corneal conditions in which unwanted inflammation has a role in the pathophysiology of the disorder. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Ipomoea cameo Jacq. ssp. fistulosa (Mart. Ex Choisy; Convolvulaceae; I. cameo) possesses a toxic component: an indolizidine alkaloid swainsonine (SW) that has immunomodulatory effects due to its inhibition of glycoprotein metabolism. It is also known that SW is excreted into both the amniotic fluid and milk of female rats exposed to I. cameo. Thus, the aim of this study was to determine whether SW exposure, either in utero or from the milk of dams treated with I. cornea, modulates offspring immune function into adulthood. In addition, adult (70 days old) and juvenile rats (21 days old) were exposed to I. cameo in order to evaluate several other immune parameters: lymphoid organs relative weight and cellularity, humoral and cellular immune responses. Offspring exposed to I. cornea during lactation developed rheumatoid arthritis (RA) in adulthood after an immunogenic challenge. In addition, both adult and juvenile rats exposed to I. cameo showed discrepancies in several immune parameters, but did not exhibit any decrease in humoral immune response, which was enhanced at both ages. These findings indicate that SW modulates immune function in adult rats exposed to SW during lactation and in juvenile and adult rats exposed to SW as juveniles and adults, respectively.
Resumo:
Venous ulcers in patients with post thrombotic syndromes are complex situations with multiple therapeutic options. They are responsible for high morbidity rates, conservative treatment is very slow and recurrences are very common. Deep venous reconstructive surgery is an alternative, but it should be based on the morphologic and functional aspects of the venous system and only adopted after a very careful study, including venography. The authors describe a morphological "pattern", found in some of these patients and related to the competence of the saphenous femoral junction, rendering possible to perform a valvular transposition. Seven patients with post thrombotic ulcers who have been treated during the last 6 years in which the pattern already described was detect, underwent a transposition of the superficial femoral vein, to the great saphenous vein and when necessary complemented with skyn grafts. Before the operation all patients had ulcers with more than 3 cm in size (3.2-5.4 cm) and with more than 4 months duration (4-16 months). All ulcers healed in the postoperative period (mean time 28 days). All patients have been reevaluated in 2003 and it was diagnosed the thrombosis of two procedures, one of them with the recurrence of the ulcer who healed with conservative treatment. The authors consider this method as a very easy technique to perform, although rarely used, and a valid alternative in a highly selected group of patients.