950 resultados para Complete Equipartite Graphs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let G be a graph in which each vertex has been coloured using one of k colours, say c(1), c(2),.. , c(k). If an m-cycle C in G has n(i) vertices coloured c(i), i = 1, 2,..., k, and vertical bar n(i) - n(j)vertical bar <= 1 for any i, j is an element of {1, 2,..., k}, then C is said to be equitably k-coloured. An m-cycle decomposition C of a graph G is equitably k-colourable if the vertices of G can be coloured so that every m-cycle in W is equitably k-coloured. For m = 3, 4 and 5 we completely settle the existence question for equitably 3-colourable m-cycle decompositions of complete equipartite graphs. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic (2-colored) cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). Let Delta = Delta(G) denote the maximum degree of a vertex in a graph G. A complete bipartite graph with n vertices on each side is denoted by K-n,K-n. Alon, McDiarmid and Reed observed that a'(K-p-1,K-p-1) = p for every prime p. In this paper we prove that a'(K-p,K-p) <= p + 2 = Delta + 2 when p is prime. Basavaraju, Chandran and Kummini proved that a'(K-n,K-n) >= n + 2 = Delta + 2 when n is odd, which combined with our result implies that a'(K-p,K-p) = p + 2 = Delta + 2 when p is an odd prime. Moreover we show that if we remove any edge from K-p,K-p, the resulting graph is acyclically Delta + 1 = p + 1-edge-colorable. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conformance testing focuses on checking whether an implementation. under test (IUT) behaves according to its specification. Typically, testers are interested it? performing targeted tests that exercise certain features of the IUT This intention is formalized as a test purpose. The tester needs a "strategy" to reach the goal specified by the test purpose. Also, for a particular test case, the strategy should tell the tester whether the IUT has passed, failed. or deviated front the test purpose. In [8] Jeron and Morel show how to compute, for a given finite state machine specification and a test purpose automaton, a complete test graph (CTG) which represents all test strategies. In this paper; we consider the case when the specification is a hierarchical state machine and show how to compute a hierarchical CTG which preserves the hierarchical structure of the specification. We also propose an algorithm for an online test oracle which avoids a space overhead associated with the CTG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let K(r, s, t) denote the complete tripartite graph with partite sets of size r, s and t, where r less than or equal to s less than or equal to t. Let D be the graph consisting of a triangle with an edge attached. We show that K(r, s, t) may be decomposed into copies of D if and only if 4 divides rs + st + rt and t less than or equal to 3rs/(r + s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Steiner trade spectrum of a simple graph G is the set of all integers t for which there is a simple graph H whose edges can be partitioned into t copies of G in two entirely different ways. The Steiner trade spectra of complete partite graphs were determined in all but a few cases in a recent paper by Billington and Hoffman (Discrete Math. 250 (2002) 23). In this paper we resolve the remaining cases. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A maximum packing of any lambda-fold complete multipartite graph (where there are lambda edges between any two vertices in different parts) with edge-disjoint 4- cycles is obtained and the size of each minimum leave is given. Moreover, when lambda =2, maximum 4-cycle packings are found for all possible leaves.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). It was conjectured by Alon, Suclakov and Zaks (and earlier by Fiamcik) that a'(G) <= Delta+2, where Delta = Delta(G) denotes the maximum degree of the graph. Alon et al. also raised the question whether the complete graphs of even order are the only regular graphs which require Delta+2 colors to be acyclically edge colored. In this article, using a simple counting argument we observe not only that this is not true, but in fact all d-regular graphs with 2n vertices and d>n, requires at least d+2 colors. We also show that a'(K-n,K-n) >= n+2, when n is odd using a more non-trivial argument. (Here K-n,K-n denotes the complete bipartite graph with n vertices on each side.) This lower bound for Kn,n can be shown to be tight for some families of complete bipartite graphs and for small values of n. We also infer that for every d, n such that d >= 5, n >= 2d+3 and dn even, there exist d-regular graphs which require at least d+2-colors to be acyclically edge colored. (C) 2009 Wiley Periodicals, Inc. J Graph Theory 63: 226-230, 2010.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Suppose G = (V, E) is a simple graph and k is a fixed positive integer. A subset D subset of V is a distance k-dominating set of G if for every u is an element of V. there exists a vertex v is an element of D such that d(G)(u, v) <= k, where d(G)(u, v) is the distance between u and v in G. A set D subset of V is a distance k-paired-dominating set of G if D is a distance k-dominating set and the induced subgraph GD] contains a perfect matching. Given a graph G = (V, E) and a fixed integer k > 0, the MIN DISTANCE k-PAIRED-DOM SET problem is to find a minimum cardinality distance k-paired-dominating set of G. In this paper, we show that the decision version of MIN DISTANCE k-PAIRED-DOM SET iS NP-complete for undirected path graphs. This strengthens the complexity of decision version Of MIN DISTANCE k-PAIRED-DOM SET problem in chordal graphs. We show that for a given graph G, unless NP subset of DTIME (n(0)((log) (log) (n)) MIN DISTANCE k-PAIRED-Dom SET problem cannot be approximated within a factor of (1 -epsilon ) In n for any epsilon > 0, where n is the number of vertices in G. We also show that MIN DISTANCE k-PAIRED-DOM SET problem is APX-complete for graphs with degree bounded by 3. On the positive side, we present a linear time algorithm to compute the minimum cardinality of a distance k-paired-dominating set of a strongly chordal graph G if a strong elimination ordering of G is provided. We show that for a given graph G, MIN DISTANCE k-PAIRED-DOM SET problem can be approximated with an approximation factor of 1 + In 2 + k . In(Delta(G)), where Delta(G) denotes the maximum degree of G. (C) 2012 Elsevier B.V All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analyser le code permet de vérifier ses fonctionnalités, détecter des bogues ou améliorer sa performance. L’analyse du code peut être statique ou dynamique. Des approches combinants les deux analyses sont plus appropriées pour les applications de taille industrielle où l’utilisation individuelle de chaque approche ne peut fournir les résultats souhaités. Les approches combinées appliquent l’analyse dynamique pour déterminer les portions à problèmes dans le code et effectuent par la suite une analyse statique concentrée sur les parties identifiées. Toutefois les outils d’analyse dynamique existants génèrent des données imprécises ou incomplètes, ou aboutissent en un ralentissement inacceptable du temps d’exécution. Lors de ce travail, nous nous intéressons à la génération de graphes d’appels dynamiques complets ainsi que d’autres informations nécessaires à la détection des portions à problèmes dans le code. Pour ceci, nous faisons usage de la technique d’instrumentation dynamique du bytecode Java pour extraire l’information sur les sites d’appels, les sites de création d’objets et construire le graphe d’appel dynamique du programme. Nous démontrons qu’il est possible de profiler dynamiquement une exécution complète d’une application à temps d’exécution non triviale, et d’extraire la totalité de l’information à un coup raisonnable. Des mesures de performance de notre profileur sur trois séries de benchmarks à charges de travail diverses nous ont permis de constater que la moyenne du coût de profilage se situe entre 2.01 et 6.42. Notre outil de génération de graphes dynamiques complets, nommé dyko, constitue également une plateforme extensible pour l’ajout de nouvelles approches d’instrumentation. Nous avons testé une nouvelle technique d’instrumentation des sites de création d’objets qui consiste à adapter les modifications apportées par l’instrumentation au bytecode de chaque méthode. Nous avons aussi testé l’impact de la résolution des sites d’appels sur la performance générale du profileur.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nella tesi sono trattate due famiglie di modelli meccanico statistici su vari grafi: i modelli di spin ferromagnetici (o di Ising) e i modelli di monomero-dimero. Il primo capitolo è dedicato principalmente allo studio del lavoro di Dembo e Montanari, in cui viene risolto il modello di Ising su grafi aleatori. Nel secondo capitolo vengono studiati i modelli di monomero-dimero, a partire dal lavoro di Heilemann e Lieb,con l'intento di dare contributi nuovi alla teoria. I principali temi trattati sono disuguaglianze di correlazione, soluzioni esatte su alcuni grafi ad albero e sul grafo completo, la concentrazione dell'energia libera intorno al proprio valor medio sul grafo aleatorio diluito di Erdös-Rényi.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Includes bibliographical references.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A graph G is a common multiple of two graphs H-1 and H-2 if there exists a decomposition of G into edge-disjoint copies of H-1 and also a decomposition of G into edge-disjoint copies of H-2. In this paper, we consider the case where H-1 is the 4-cycle C-4 and H-2 is the complete graph with n vertices K-n. We determine, for all positive integers n, the set of integers q for which there exists a common multiple of C-4 and K-n having precisely q edges. (C) 2003 Elsevier B.V. All rights reserved.