938 resultados para Closed-Loop Systems
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
This paper discusses a new method of impedance control that has been successfully implemented on the master robot of a teleoperation system. The method involves calibrating the robot to quantify the effect of adjustable controller parameters on the impedances along its different axes. The empirical equations relating end-effector impedance to the controller's feedback gains are obtained by performing system identification tests along individual axes of the robot. With these equations, online control of end-effector stiffness and damping is possible without having to monitor joint torques or solving complex algorithms. Hard contact conditions and compliant interfaces have been effectively demonstrated on a telemanipulation test-bed using appropriate combinations of stiffness and damping settings obtained by this method.
Resumo:
Model predictive control (MPC) applications in the process industry usually deal with process systems that show time delays (dead times) between the system inputs and outputs. Also, in many industrial applications of MPC, integrating outputs resulting from liquid level control or recycle streams need to be considered as controlled outputs. Conventional MPC packages can be applied to time-delay systems but stability of the closed loop system will depend on the tuning parameters of the controller and cannot be guaranteed even in the nominal case. In this work, a state space model based on the analytical step response model is extended to the case of integrating time systems with time delays. This model is applied to the development of two versions of a nominally stable MPC, which is designed to the practical scenario in which one has targets for some of the inputs and/or outputs that may be unreachable and zone control (or interval tracking) for the remaining outputs. The controller is tested through simulation of a multivariable industrial reactor system. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The main objective of ventilation systems in case of fire is the reduction of the possible consequences by achieving the best possible conditions for the evacuation of the users and the intervention of the emergency services. In the last years, the required quick response of the ventilation system, from normal to emergency mode, has been improved by the use of automatic and semi-automatic control systems, what reduces the response times through the support to the operators decision taking, and the use of pre-defined strategies. A further step consists on the use of closedloop algorithms, which takes into account not only the initial conditions but their development (air velocity, traffic situation, etc), optimizing the quality of the smoke control process
Resumo:
Final report; March 1978.
Resumo:
Among several process variability sources, valve friction and inadequate controller tuning are supposed to be two of the most prevalent. Friction quantification methods can be applied to the development of model-based compensators or to diagnose valves that need repair, whereas accurate process models can be used in controller retuning. This paper extends existing methods that jointly estimate the friction and process parameters, so that a nonlinear structure is adopted to represent the process model. The developed estimation algorithm is tested with three different data sources: a simulated first order plus dead time process, a hybrid setup (composed of a real valve and a simulated pH neutralization process) and from three industrial datasets corresponding to real control loops. The results demonstrate that the friction is accurately quantified, as well as ""good"" process models are estimated in several situations. Furthermore, when a nonlinear process model is considered, the proposed extension presents significant advantages: (i) greater accuracy for friction quantification and (ii) reasonable estimates of the nonlinear steady-state characteristics of the process. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work deals with a procedure for model re-identification of a process in closed loop with ail already existing commercial MPC. The controller considered here has a two-layer structure where the upper layer performs a target calculation based on a simplified steady-state optimization of the process. Here, it is proposed a methodology where a test signal is introduced in a tuning parameter of the target calculation layer. When the outputs are controlled by zones instead of at fixed set points, the approach allows the continuous operation of the process without an excessive disruption of the operating objectives as process constraints and product specifications remain satisfied during the identification test. The application of the method is illustrated through the simulation of two processes of the oil refining industry. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVE: Before a patient can be connected to a mechanical ventilator, the controls of the apparatus need to be set up appropriately. Today, this is done by the intensive care professional. With the advent of closed loop controlled mechanical ventilation, methods will be needed to select appropriate start up settings automatically. The objective of our study was to test such a computerized method which could eventually be used as a start-up procedure (first 5-10 minutes of ventilation) for closed-loop controlled ventilation. DESIGN: Prospective Study. SETTINGS: ICU's in two adult and one children's hospital. PATIENTS: 25 critically ill adult patients (age > or = 15 y) and 17 critically ill children selected at random were studied. INTERVENTIONS: To stimulate 'initial connection', the patients were disconnected from their ventilator and transiently connected to a modified Hamilton AMADEUS ventilator for maximally one minute. During that time they were ventilated with a fixed and standardized breath pattern (Test Breaths) based on pressure controlled synchronized intermittent mandatory ventilation (PCSIMV). MEASUREMENTS AND MAIN RESULTS: Measurements of airway flow, airway pressure and instantaneous CO2 concentration using a mainstream CO2 analyzer were made at the mouth during application of the Test-Breaths. Test-Breaths were analyzed in terms of tidal volume, expiratory time constant and series dead space. Using this data an initial ventilation pattern consisting of respiratory frequency and tidal volume was calculated. This ventilation pattern was compared to the one measured prior to the onset of the study using a two-tailed paired t-test. Additionally, it was compared to a conventional method for setting up ventilators. The computer-proposed ventilation pattern did not differ significantly from the actual pattern (p > 0.05), while the conventional method did. However the scatter was large and in 6 cases deviations in the minute ventilation of more than 50% were observed. CONCLUSIONS: The analysis of standardized Test Breaths allows automatic determination of an initial ventilation pattern for intubated ICU patients. While this pattern does not seem to be superior to the one chosen by the conventional method, it is derived fully automatically and without need for manual patient data entry such as weight or height. This makes the method potentially useful as a start up procedure for closed-loop controlled ventilation.
Resumo:
A recent area for investigation into the development of adaptable robot control is the use of living neuronal networks to control a mobile robot. The so-called Animat paradigm comprises a neuronal network (the ‘brain’) connected to an external embodiment (in this case a mobile robot), facilitating potentially robust, adaptable robot control and increased understanding of neural processes. Sensory input from the robot is provided to the neuronal network via stimulation on a number of electrodes embedded in a specialist Petri dish (Multi Electrode Array (MEA)); accurate control of this stimulation is vital. We present software tools allowing precise, near real-time control of electrical stimulation on MEAs, with fast switching between electrodes and the application of custom stimulus waveforms. These Linux-based tools are compatible with the widely used MEABench data acquisition system. Benefits include rapid stimulus modulation in response to neuronal activity (closed loop) and batch processing of stimulation protocols.
Resumo:
Objective To assess the impact of a closed-loop electronic prescribing and automated dispensing system on the time spent providing a ward pharmacy service and the activities carried out. Setting Surgical ward, London teaching hospital. Method All data were collected two months pre- and one year post-intervention. First, the ward pharmacist recorded the time taken each day for four weeks. Second, an observational study was conducted over 10 weekdays, using two-dimensional work sampling, to identify the ward pharmacist's activities. Finally, medication orders were examined to identify pharmacists' endorsements that should have been, and were actually, made. Key findings Mean time to provide a weekday ward pharmacy service increased from 1 h 8 min to 1 h 38 min per day (P = 0.001; unpaired t-test). There were significant increases in time spent prescription monitoring, recommending changes in therapy/monitoring, giving advice or information, and non-productive time. There were decreases for supply, looking for charts and checking patients' own drugs. There was an increase in the amount of time spent with medical and pharmacy staff, and with 'self'. Seventy-eight per cent of patients' medication records could be assessed for endorsements pre- and 100% post-intervention. Endorsements were required for 390 (50%) of 787 medication orders pre-intervention and 190 (21%) of 897 afterwards (P < 0.0001; chi-square test). Endorsements were made for 214 (55%) of endorsement opportunities pre-intervention and 57 (30%) afterwards (P < 0.0001; chi-square test). Conclusion The intervention increased the overall time required to provide a ward pharmacy service and changed the types of activity undertaken. Contact time with medical and pharmacy staff increased. There was no significant change in time spent with patients. Fewer pharmacy endorsements were required post-intervention, but a lower percentage were actually made. The findings have important implications for the design, introduction and use of similar systems.
Resumo:
Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled flight. The aim of this work is to construct a robust closed-loop control that optimally extends the stable and decoupled flight envelope. For the study of these systems nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and investigate control effects on dynamic behavior. In this work linear feedback control designs calculated by eigenstructure assignment methods are investigated for a simple aircraft model at a fixed flight condition. Bifurcation analysis in conjunction with linear control design methods is shown to aid control law design for the nonlinear system.
Resumo:
Trust and reputation are important factors that influence the success of both traditional transactions in physical social networks and modern e-commerce in virtual Internet environments. It is difficult to define the concept of trust and quantify it because trust has both subjective and objective characteristics at the same time. A well-reported issue with reputation management system in business-to-consumer (BtoC) e-commerce is the “all good reputation” problem. In order to deal with the confusion, a new computational model of reputation is proposed in this paper. The ratings of each customer are set as basic trust score events. In addition, the time series of massive ratings are aggregated to formulate the sellers’ local temporal trust scores by Beta distribution. A logical model of trust and reputation is established based on the analysis of the dynamical relationship between trust and reputation. As for single goods with repeat transactions, an iterative mathematical model of trust and reputation is established with a closed-loop feedback mechanism. Numerical experiments on repeated transactions recorded over a period of 24 months are performed. The experimental results show that the proposed method plays guiding roles for both theoretical research into trust and reputation and the practical design of reputation systems in BtoC e-commerce.
Resumo:
In recent years, many researchers in the field of biomedical sciences have made successful use of mathematical models to study, in a quantitative way, a multitude of phenomena such as those found in disease dynamics, control of physiological systems, optimization of drug therapy, economics of the preventive medicine and many other applications. The availability of good dynamic models have been providing means for simulation and design of novel control strategies in the context of biological events. This work concerns a particular model related to HIV infection dynamics which is used to allow a comparative evaluation of schemes for treatment of AIDS patients. The mathematical model adopted in this work was proposed by Nowak & Bangham, 1996 and describes the dynamics of viral concentration in terms of interaction with CD4 cells and the cytotoxic T lymphocytes, which are responsible for the defense of the organism. Two conceptually distinct techniques for drug therapy are analyzed: Open Loop Treatment, where a priori fixed dosage is prescribed and Closed Loop Treatment, where the doses are adjusted according to results obtained by laboratory analysis. Simulation results show that the Closed Loop Scheme can achieve improved quality of the treatment in terms of reduction in the viral load and quantity of administered drugs, but with the inconvenience related to the necessity of frequent and periodic laboratory analysis.