985 resultados para Chen-Burer algorithm
Resumo:
In this work we analyze an optimal control problem for a system of two hydroelectric power stations in cascade with reversible turbines. The objective is to optimize the profit of power production while respecting the system’s restrictions. Some of these restrictions translate into state constraints and the cost function is nonconvex. This increases the complexity of the optimal control problem. The problem is solved numerically and two different approaches are adopted. These approaches focus on global optimization techniques (Chen-Burer algorithm) and on a projection estimation refinement method (PERmethod). PERmethod is used as a technique to reduce the dimension of the problem. Results and execution time of the two procedures are compared.
Resumo:
This paper proposes a train movement model with fixed runtime that can be employed to find feasible control strategies for a single train along an inter-city railway line. The objective of the model is to minimize arrival delays at each station along railway lines. However, train movement is a typical nonlinear problem for complex running environments and different requirements. A heuristic algorithm is developed to solve the problem in this paper and the simulation results show that the train could overcome the disturbance from train delay and coordinates the operation strategies to sure punctual arrival of trains at the destination. The developed algorithm can also be used to evaluate the running reliability of trains in scheduled timetables.
Resumo:
Energy efficient embedded computing enables new application scenarios in mobile devices like software-defined radio and video processing. The hierarchical multiprocessor considered in this work may contain dozens or hundreds of resource efficient VLIW CPUs. Programming this number of CPU cores is a complex task requiring compiler support. The stream programming paradigm provides beneficial properties that help to support automatic partitioning. This work describes a compiler for streaming applications targeting the self-build hierarchical CoreVA-MPSoC multiprocessor platform. The compiler is supported by a programming model that is tailored to fit the streaming programming paradigm. We present a novel simulated-annealing (SA) based partitioning algorithm, called Smart SA. The overall speedup of Smart SA is 12.84 for an MPSoC with 16 CPU cores compared to a single CPU implementation. Comparison with a state of the art partitioning algorithm shows an average performance improvement of 34.07%.
Resumo:
We investigate the terminating concept of BKZ reduction first introduced by Hanrot et al. [Crypto'11] and make extensive experiments to predict the number of tours necessary to obtain the best possible trade off between reduction time and quality. Then, we improve Buchmann and Lindner's result [Indocrypt'09] to find sub-lattice collision in SWIFFT. We illustrate that further improvement in time is possible through special setting of SWIFFT parameters and also through the combination of different reduction parameters adaptively. Our contribution also include a probabilistic simulation approach top-up deterministic simulation described by Chen and Nguyen [Asiacrypt'11] that can able to predict the Gram-Schmidt norms more accurately for large block sizes.
Resumo:
In this paper, a novel genetic algorithm is developed by generating artificial chromosomes with probability control to solve the machine scheduling problems. Generating artificial chromosomes for Genetic Algorithm (ACGA) is closely related to Evolutionary Algorithms Based on Probabilistic Models (EAPM). The artificial chromosomes are generated by a probability model that extracts the gene information from current population. ACGA is considered as a hybrid algorithm because both the conventional genetic operators and a probability model are integrated. The ACGA proposed in this paper, further employs the ``evaporation concept'' applied in Ant Colony Optimization (ACO) to solve the permutation flowshop problem. The ``evaporation concept'' is used to reduce the effect of past experience and to explore new alternative solutions. In this paper, we propose three different methods for the probability of evaporation. This probability of evaporation is applied as soon as a job is assigned to a position in the permutation flowshop problem. Experimental results show that our ACGA with the evaporation concept gives better performance than some algorithms in the literature.
Resumo:
Displacement estimation is a key step in the evaluation of tissue elasticity by quasistatic strain imaging. An efficient approach may incorporate a tracking strategy whereby each estimate is initially obtained from its neighbours' displacements and then refined through a localized search. This increases the accuracy and reduces the computational expense compared with exhaustive search. However, simple tracking strategies fail when the target displacement map exhibits complex structure. For example, there may be discontinuities and regions of indeterminate displacement caused by decorrelation between the pre- and post-deformation radio frequency (RF) echo signals. This paper introduces a novel displacement tracking algorithm, with a search strategy guided by a data quality indicator. Comparisons with existing methods show that the proposed algorithm is more robust when the displacement distribution is challenging.
Resumo:
Theoretical analyses of x-ray diffraction phase contrast imaging and near field phase retrieval method are presented. A new variant of the near field intensity distribution is derived with the optimal phase imaging distance and spatial frequency of object taken into account. Numerical examples of phase retrieval using simulated data are also given. On the above basis, the influence of detecting distance and polychroism of radiation on the phase contrast image and the retrieved phase distribution are discussed. The present results should be useful in the practical application of in-line phase contrast imaging.
Optimization of high-order harmonic by genetic algorithm for the chirp and phase of few-cycle pulses
Resumo:
The brightness of a particular harmonic order is optimized for the chirp and initial phase of the laser pulse by genetic algorithm. The influences of the chirp and initial phase of the excitation pulse on the harmonic spectra are discussed in terms of the semi-classical model including the propagation effects. The results indicate that the harmonic intensity and cutoff have strong dependence on the chirp of the laser pulse, but slightly on its initial phase. The high-order harmonics can be enhanced by the optimal laser pulse and its cutoff can be tuned by optimization of the chirp and initial phase of the laser pulse.
Resumo:
An optimal feedback control of two-photon fluorescence in the ethanol solution of 4-dicyanomethylene-2-methyl-6-p-dimethyl-amiiiostryryl-4H-pyran (DCM) using pulse-shaping technique based on genetic algorithm is demonstrated experimentally. The two-photon fluorescence of the DCM ethanol solution is enhanced in intensity of about 23%. The second harmonic generation frequency-resolved optical gating (SHG-FROG) trace indicates that the effective population transfer arises from the positively chirped pulse. The experimental results appear the potential applications of coherent control to the complicated molecular system.
Resumo:
The alternate combinational approach of genetic algorithm and neural network (AGANN) has been presented to correct the systematic error of the density functional theory (DFT) calculation. It treats the DFT as a black box and models the error through external statistical information. As a demonstration, the AGANN method has been applied in the correction of the lattice energies from the DFT calculation for 72 metal halides and hydrides. Through the AGANN correction, the mean absolute value of the relative errors of the calculated lattice energies to the experimental values decreases from 4.93% to 1.20% in the testing set. For comparison, the neural network approach reduces the mean value to 2.56%. And for the common combinational approach of genetic algorithm and neural network, the value drops to 2.15%. The multiple linear regression method almost has no correction effect here.