587 resultados para Causality


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the study of student learning literature, the traditional view holds that when students are faced with heavy workload, poor teaching, and content that they cannot relate to – important aspects of the learning context, they will more likely utilise the surface approach to learning due to stresses, lack of understanding and lack of perceived relevance of the content (Kreber, 2003; Lizzio, Wilson, & Simons, 2002; Ramdsen, 1989; Ramsden, 1992; Trigwell & Prosser, 1991; Vermunt, 2005). For example, in studies involving health and medical sciences students, courses that utilised student-centred, problem-based approaches to teaching and learning were found to elicit a deeper approach to learning than the teacher-centred, transmissive approach (Patel, Groen, & Norman, 1991; Sadlo & Richardson, 2003). It is generally accepted that the line of causation runs from the learning context (or rather students’ self reported data on the learning context) to students’ learning approaches. That is, it is the learning context as revealed by students’ self-reported data that elicit the associated learning behaviour. However, other research studies also found that the same teaching and learning environment can be perceived differently by different students. In a study of students’ perceptions of assessment requirements, Sambell and McDowell (1998) found that students “are active in the reconstruction of the messages and meanings of assessment” (p. 391), and their interpretations are greatly influenced by their past experiences and motivations. In a qualitative study of Hong Kong tertiary students, Kember (2004) found that students using the surface learning approach reported heavier workload than students using the deep learning approach. According to Kember if students learn by extracting meanings from the content and making connections, they will more likely see the higher order intentions embodied in the content and the high cognitive abilities being assessed. On the other hand, if they rote-learn for the graded task, they fail to see the hierarchical relationship in the content and to connect the information. These rote-learners will tend to see the assessment as requiring memorising and regurgitation of a large amount of unconnected knowledge, which explains why they experience a high workload. Kember (2004) thus postulate that it is the learning approach that influences how students perceive workload. Campbell and her colleagues made a similar observation in their interview study of secondary students’ perceptions of teaching in the same classroom (Campbell et al., 2001). The above discussions suggest that students’ learning approaches can influence their perceptions of assessment demands and other aspects of the learning context such as relevance of content and teaching effectiveness. In other words, perceptions of elements in the teaching and learning context are endogenously determined. This study attempted to investigate the causal relationships at the individual level between learning approaches and perceptions of the learning context in economics education. In this study, students’ learning approaches and their perceptions of the learning context were measured. The elements of the learning context investigated include: teaching effectiveness, workload and content. The authors are aware of existence of other elements of the learning context, such as generic skills, goal clarity and career preparation. These aspects, however, were not within the scope of this present study and were therefore not investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ways we assume, observe and model “presence” and its effects are the focus in this paper. Entities with selectively shared presences are the basis of any collective, and of attributions (such as “humorous”, “efficient” or “intelligent”). The subtleties of any joint presence can markedly influence potentials, perceptions and performance of the collective as demonstrated when a humorous tale is counterpoised with disciplined thought. Disciplines build on presences assumed known or knowable while fluid and interpretable presences pervade humor. Explorations in this paper allow considerations of collectives, causality and the philosophy of computing. Economics has long considered issues of collective action in ways circumscribed by assumptions about the presence of economic entities. Such entities are deemed rational but they are clearly not intelligent. To reach its potential, collective intelligence research needs more adequate considerations of alternate presences and their impacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Air transport is a critical link to regional, rural and remote communities in Australia. Air services provide important economic and social benefits but very little research has been done on assessing the value of regional aviation. This research provides the first empirical evidence that there is short and long run causality between regional aviation and economic growth. The authors analysed 88 regional airports in Australia over a period of 1985–86 to 2010–11 to determine the catalytic impacts of regional air transport on regional economic growth. The analysis was conducted using annual data related to total airport passenger movements – for the level of airport activity, and real aggregate taxable income – to represent economic growth. A significant bi-directional relationship was established: airports have an impact on regional economic growth and the economy directly impacts regional air transport. The economic significance of regional air transport confirms the importance of the airport as infrastructure for regional councils and the need for them to maintain and develop local airports. Funding should be targeted at airports directly to support regional development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective This study highlights the serious consequences of ignoring reverse causality bias in studies on compensation-related factors and health outcomes and demonstrates a technique for resolving this problem of observational data. Study Design and Setting Data from an English longitudinal study on factors, including claims for compensation, associated with recovery from neck pain (whiplash) after rear-end collisions are used to demonstrate the potential for reverse causality bias. Although it is commonly believed that claiming compensation leads to worse recovery, it is also possible that poor recovery may lead to compensation claims—a point that is seldom considered and never addressed empirically. This pedagogical study compares the association between compensation claiming and recovery when reverse causality bias is ignored and when it is addressed, controlling for the same observable factors. Results When reverse causality is ignored, claimants appear to have a worse recovery than nonclaimants; however, when reverse causality bias is addressed, claiming compensation appears to have a beneficial effect on recovery, ceteris paribus. Conclusion To avert biased policy and judicial decisions that might inadvertently disadvantage people with compensable injuries, there is an urgent need for researchers to address reverse causality bias in studies on compensation-related factors and health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simultaneous recordings of spike trains from multiple single neurons are becoming commonplace. Understanding the interaction patterns among these spike trains remains a key research area. A question of interest is the evaluation of information flow between neurons through the analysis of whether one spike train exerts causal influence on another. For continuous-valued time series data, Granger causality has proven an effective method for this purpose. However, the basis for Granger causality estimation is autoregressive data modeling, which is not directly applicable to spike trains. Various filtering options distort the properties of spike trains as point processes. Here we propose a new nonparametric approach to estimate Granger causality directly from the Fourier transforms of spike train data. We validate the method on synthetic spike trains generated by model networks of neurons with known connectivity patterns and then apply it to neurons limultaneously recorded from the thalamus and the primary somatosensory cortex of a squirrel monkey undergoing tactile stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multielectrode neurophysiological recording and high-resolution neuroimaging generate multivariate data that are the basis for understanding the patterns of neural interactions. How to extract directions of information flow in brain networks from these data remains a key challenge. Research over the last few years has identified Granger causality as a statistically principled technique to furnish this capability. The estimation of Granger causality currently requires autoregressive modeling of neural data. Here, we propose a nonparametric approach based on widely used Fourier and wavelet transforms to estimate both pairwise and conditional measures of Granger causality, eliminating the need of explicit autoregressive data modeling. We demonstrate the effectiveness of this approach by applying it to synthetic data generated by network models with known connectivity and to local field potentials recorded from monkeys performing a sensorimotor task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A visual world eye-tracking study investigated the activation and persistence of implicit causality information in spoken language comprehension. We showed that people infer the implicit causality of verbs as soon as they encounter such verbs in discourse, as is predicted by proponents of the immediate focusing account (Greene & McKoon, 1995; Koornneef & Van Berkum, 2006; Van Berkum, Koornneef, Otten, & Nieuwland, 2007). Interestingly, we observed activation of implicit causality information even before people encountered the causal conjunction. However, while implicit causality information was persistent as the discourse unfolded, it did not have a privileged role as a focusing cue immediately at the ambiguous pronoun when people were resolving its antecedent. Instead, our study indicated that implicit causality does not affect all referents to the same extent, rather it interacts with other cues in the discourse, especially when one of the referents is already prominently in focus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Causal relationships existing between observed levels of groundwater in a semi-arid sub-basin of the Kabini River basin (Karnataka state, India) are investigated in this study. A Vector Auto Regressive model is used for this purpose. Its structure is built on an upstream/downstream interaction network based on observed hydro-physical properties. Exogenous climatic forcing is used as an input based on cumulated rainfall departure. Optimal models are obtained thanks to a trial approach and are used as a proxy of the dynamics to derive causal networks. It appears to be an interesting tool for analysing the causal relationships existing inside the basin. The causal network reveals 3 main regions: the Northeastern part of the Gundal basin is closely coupled to the outlet dynamics. The Northwestern part is mainly controlled by the climatic forcing and only marginally linked to the outlet dynamic. Finally, the upper part of the basin plays as a forcing rather than a coupling with the lower part of the basin allowing for a separate analysis of this local behaviour. The analysis also reveals differential time scales at work inside the basin when comparing upstream oriented with downstream oriented causalities. In the upper part of the basin, time delays are close to 2 months in the upward direction and lower than 1 month in the downward direction. These time scales are likely to be good indicators of the hydraulic response time of the basin which is a parameter usually difficult to estimate practically. This suggests that, at the sub-basin scale, intra-annual time scales would be more relevant scales for analysing or modelling tropical basin dynamics in hard rock (granitic and gneissic) aquifers ubiquitous in south India. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multivariate neural data provide the basis for assessing interactions in brain networks. Among myriad connectivity measures, Granger causality (GC) has proven to be statistically intuitive, easy to implement, and generate meaningful results. Although its application to functional MRI (fMRI) data is increasing, several factors have been identified that appear to hinder its neural interpretability: (a) latency differences in hemodynamic response function (HRF) across different brain regions, (b) low-sampling rates, and (c) noise. Recognizing that in basic and clinical neuroscience, it is often the change of a dependent variable (e.g., GC) between experimental conditions and between normal and pathology that is of interest, we address the question of whether there exist systematic relationships between GC at the fMRI level and that at the neural level. Simulated neural signals were convolved with a canonical HRF, down-sampled, and noise-added to generate simulated fMRI data. As the coupling parameters in the model were varied, fMRI GC and neural GC were calculated, and their relationship examined. Three main results were found: (1) GC following HRF convolution is a monotonically increasing function of neural GC; (2) this monotonicity can be reliably detected as a positive correlation when realistic fMRI temporal resolution and noise level were used; and (3) although the detectability of monotonicity declined due to the presence of HRF latency differences, substantial recovery of detectability occurred after correcting for latency differences. These results suggest that Granger causality is a viable technique for analyzing fMRI data when the questions are appropriately formulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Granger causality is increasingly being applied to multi-electrode neurophysiological and functional imaging data to characterize directional interactions between neurons and brain regions. For a multivariate dataset, one might be interested in different subsets of the recorded neurons or brain regions. According to the current estimation framework, for each subset, one conducts a separate autoregressive model fitting process, introducing the potential for unwanted variability and uncertainty. In this paper, we propose a multivariate framework for estimating Granger causality. It is based on spectral density matrix factorization and offers the advantage that the estimation of such a matrix needs to be done only once for the entire multivariate dataset. For any subset of recorded data, Granger causality can be calculated through factorizing the appropriate submatrix of the overall spectral density matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the signals recorded in experiments are inevitably contaminated by measurement noise. Hence, it is important to understand the effect of such noise on estimating causal relations between such signals. A primary tool for estimating causality is Granger causality. Granger causality can be computed by modeling the signal using a bivariate autoregressive (AR) process. In this paper, we greatly extend the previous analysis of the effect of noise by considering a bivariate AR process of general order p. From this analysis, we analytically obtain the dependence of Granger causality on various noise-dependent system parameters. In particular, we show that measurement noise can lead to spurious Granger causality and can suppress true Granger causality. These results are verified numerically. Finally, we show how true causality can be recovered numerically using the Kalman expectation maximization algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conceptual Design Phase is the most critical for design decisions and their impact on the Environment. It is also a phase of many `unknowns' making it flexible and allowing exploration of many solutions. Thus, it is a challenge to determine the most Environmentally-benign Solution or Concept to be translated in to a `good' product. The SAPPhIRE Model captures the various levels of abstractions present in Conceptual Design by Outcomes and defines a Solution-variant as a set of verifiable and quantifiable Outcomes. The Causality explains the propagation of Environmental Impact across Outcomes at varying levels of abstraction, suggesting that the Environmental Impact of an Outcome at a certain level can be represented as a collation of Environmental Impact information of all the Outcomes at each of its subsequent lower levels of abstraction. Thus a ball-park impact value can be associated with the higher-levels of abstraction, thereby supporting design decisions taken earlier on in Conceptual Design directing towards Environmentally-benign Design.