911 resultados para Case Based Computing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that the dimensions of the pelvic bones depend on the gender and vary with the age of the individual. Indeed, and as a matter of fact, this work will focus on the development of an intelligent decision support system to predict individual’s age based on pelvis’ dimensions criteria. On the one hand, some basic image processing technics were applied in order to extract the relevant features from pelvic X-rays. On the other hand, the computational framework presented here was built on top of a Logic Programming approach to knowledge representation and reasoning, that caters for the handling of incomplete, unknown, or even self-contradictory information, complemented with a Case Base approach to computing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metaheuristics performance is highly dependent of the respective parameters which need to be tuned. Parameter tuning may allow a larger flexibility and robustness but requires a careful initialization. The process of defining which parameters setting should be used is not obvious. The values for parameters depend mainly on the problem, the instance to be solved, the search time available to spend in solving the problem, and the required quality of solution. This paper presents a learning module proposal for an autonomous parameterization of Metaheuristics, integrated on a Multi-Agent System for the resolution of Dynamic Scheduling problems. The proposed learning module is inspired on Autonomic Computing Self-Optimization concept, defining that systems must continuously and proactively improve their performance. For the learning implementation it is used Case-based Reasoning, which uses previous similar data to solve new cases. In the use of Case-based Reasoning it is assumed that similar cases have similar solutions. After a literature review on topics used, both AutoDynAgents system and Self-Optimization module are described. Finally, a computational study is presented where the proposed module is evaluated, obtained results are compared with previous ones, some conclusions are reached, and some future work is referred. It is expected that this proposal can be a great contribution for the self-parameterization of Metaheuristics and for the resolution of scheduling problems on dynamic environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a Self-Optimizing module, inspired on Autonomic Computing, acquiring a scheduling system with the ability to automatically select a Meta-heuristic to use in the optimization process, so as its parameterization. Case-based Reasoning was used so the system may be able of learning from the acquired experience, in the resolution of similar problems. From the obtained results we conclude about the benefit of its use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tutkimuksen selvitettiin miten skenaarioanalyysia voidaan käyttää uuden teknologian tutkimisessa. Työssä havaittiin, että skenaarioanalyysin soveltuvuuteen vaikuttaa eniten teknologisen muutoksen taso ja saatavilla olevan tiedon luonne. Skenaariomenetelmä soveltuu hyvin uusien teknologioiden tutkimukseen erityisesti radikaalien innovaatioiden kohdalla. Syynä tähän on niihin liittyvä suuri epävarmuus, kompleksisuus ja vallitsevan paradigman muuttuminen, joiden takia useat muut tulevaisuuden tutkimuksen menetelmät eivät ole tilanteessa käyttökelpoisia. Työn empiirisessä osiossa tutkittiin hilaverkkoteknologian tulevaisuutta skenaarioanalyysin avulla. Hilaverkot nähtiin mahdollisena disruptiivisena teknologiana, joka radikaalina innovaationa saattaa muuttaa tietokonelaskennan nykyisestä tuotepohjaisesta laskentakapasiteetin ostamisesta palvelupohjaiseksi. Tällä olisi suuri vaikutus koko nykyiseen ICT-toimialaan erityisesti tarvelaskennan hyödyntämisen ansiosta. Tutkimus tarkasteli kehitystä vuoteen 2010 asti. Teorian ja olemassa olevan tiedon perusteella muodostettiin vahvaan asiantuntijatietouteen nojautuen neljä mahdollista ympäristöskenaariota hilaverkoille. Skenaarioista huomattiin, että teknologian kaupallinen menestys on vielä monen haasteen takana. Erityisesti luottamus ja lisäarvon synnyttäminen nousivat tärkeimmiksi hilaverkkojen tulevaisuutta ohjaaviksi tekijöiksi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hospitals everywhere are integrating health data using electronic health record (EHR) systems, and disparate and multimedia patient data can be input by different caregivers at different locations as encapsulated patient profiles. Healthcare institutions are also using the flexibility and speed of wireless computing to improve quality and reduce costs. We are developing a mobile application that allows doctors to efficiently record and access complete and accurate real-time patient information. The system integrates medical imagery with textual patient profiles as well as expert interactions by healthcare personnel using knowledge management and case-based reasoning techniques. The application can assist other caregivers in searching large repositories of previous patient cases. Patients' symptoms can be input to a portable device and the application can quickly retrieve similar profiles which can be used to support effective diagnoses and prognoses by comparing symptoms, treatments, diagnosis, test results and other patient information. © 2007 Sage Publications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Case-based Reasoning's (CBR) origins were stimulated by a desire to understand how people remember information and are in turn reminded of information, and that subsequently it was recognized that people commonly solve problems by remembering how they solved similar problems in the past. Thus CBR became an appropriate way to find out the most suitable solution method for a new problem based on the old methods for the same or even similar problems. The research highlights how to use CBR to aid biologists in finding the best method to cryo preserve algae. The study found CBR could be used successfully to find the similarity percentage between the new algae and old cases in the case base. The prediction result showed approximately 93.75% accuracy, which proves the CBR system can offer appropriate recommendations for most situations. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The length of stay of preterm infants in a neonatology service has become an issue of a growing concern, namely considering, on the one hand, the mothers and infants health conditions and, on the other hand, the scarce healthcare facilities own resources. Thus, a pro-active strategy for problem solving has to be put in place, either to improve the quality-of-service provided or to reduce the inherent financial costs. Therefore, this work will focus on the development of a diagnosis decision support system in terms of a formal agenda built on a Logic Programming approach to knowledge representation and reasoning, complemented with a case-based problem solving methodology to computing, that caters for the handling of incomplete, unknown, or even contradictory in-formation. The proposed model has been quite accurate in predicting the length of stay (overall accuracy of 84.9%) and by reducing the computational time with values around 21.3%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nosocomial infections are a growing concern because they affect a large number of people and they increase the admission time in healthcare facilities. Additionally, its diagnosis is very tricky, requiring multiple medical exams. So, this work is focused on the development of a clinical decision support system to prevent these events from happening. The proposed solution is unique once it caters for the explicit treatment of incomplete, unknown, or even contradictory information under a logic programming basis, that to our knowledge is something that happens for the first time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Waiting time at an intensive care unity stands for a key feature in the assessment of healthcare quality. Nevertheless, its estimation is a difficult task, not only due to the different factors with intricate relations among them, but also with respect to the available data, which may be incomplete, self-contradictory or even unknown. However, its prediction not only improves the patients’ satisfaction but also enhance the quality of the healthcare being provided. To fulfill this goal, this work aims at the development of a decision support system that allows one to predict how long a patient should remain at an emergency unit, having into consideration all the remarks that were just stated above. It is built on top of a Logic Programming approach to knowledge representation and reasoning, complemented with a Case Base approach to computing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thrombophilia stands for a genetic or an acquired tendency to hypercoagulable states that increase the risk of venous and arterial thromboses. Indeed, venous thromboembolism is often a chronic illness, mainly in deep venous thrombosis and pulmonary embolism, requiring lifelong prevention strategies. Therefore, it is crucial to identify the cause of the disease, the most appropriate treatment, the length of treatment or prevent a thrombotic recurrence. Thus, this work will focus on the development of a diagnosis decision support system in terms of a formal agenda built on a logic programming approach to knowledge representation and reasoning, complemented with a case-based approach to computing. The proposed model has been quite accurate in the assessment of thrombophilia predisposition risk, since the overall accuracy is higher than 90% and sensitivity ranging in the interval [86.5%, 88.1%]. The main strength of the proposed solution is the ability to deal explicitly with incomplete, unknown, or even self-contradictory information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knee osteoarthritis is the most common type of arthritis and a major cause of impaired mobility and disability for the ageing populations. Therefore, due to the increasing prevalence of the malady, it is expected that clinical and scientific practices had to be set in order to detect the problem in its early stages. Thus, this work will be focused on the improvement of methodologies for problem solving aiming at the development of Artificial Intelligence based decision support system to detect knee osteoarthritis. The framework is built on top of a Logic Programming approach to Knowledge Representation and Reasoning, complemented with a Case Based approach to computing that caters for the handling of incomplete, unknown, or even self-contradictory information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The productivity associated with commonly available disassembly methods today seldomly makes disassembly the preferred end-of-life solution for massive take back product streams. Systematic reuse of parts or components, or recycling of pure material fractions are often not achievable in an economically sustainable way. In this paper a case-based review of current disassembly practices is used to analyse the factors influencing disassembly feasibility. Data mining techniques were used to identify major factors influencing the profitability of disassembly operations. Case characteristics such as involvement of the product manufacturer in the end-of-life treatment and continuous ownership are some of the important dimensions. Economic models demonstrate that the efficiency of disassembly operations should be increased an order of magnitude to assure the competitiveness of ecologically preferred, disassembly oriented end-of-life scenarios for large waste of electric and electronic equipment (WEEE) streams. Technological means available to increase the productivity of the disassembly operations are summarized. Automated disassembly techniques can contribute to the robustness of the process, but do not allow to overcome the efficiency gap if not combined with appropriate product design measures. Innovative, reversible joints, collectively activated by external trigger signals, form a promising approach to low cost, mass disassembly in this context. A short overview of the state-of-the-art in the development of such self-disassembling joints is included. (c) 2008 CIRP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel agent-based approach to Meta-Heuristics self-configuration is proposed in this work. Meta-heuristics are examples of algorithms where parameters need to be set up as efficient as possible in order to unsure its performance. This paper presents a learning module for self-parameterization of Meta-heuristics (MHs) in a Multi-Agent System (MAS) for resolution of scheduling problems. The learning is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. In the end, some conclusions are reached and future work outlined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel agent-based approach to Meta-Heuristics self-configuration. Meta-heuristics are algorithms with parameters which need to be set up as efficient as possible in order to unsure its performance. A learning module for self-parameterization of Meta-heuristics (MH) in a Multi-Agent System (MAS) for resolution of scheduling problems is proposed in this work. The learning module is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. Finally, some conclusions are reached and future work outlined.