981 resultados para Calibration coefficients
Resumo:
This study aims to improve the accuracy of AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) pavement performance predictions for Iowa pavement systems through local calibration of MEPDG prediction models. A total of 130 representative pavement sites across Iowa were selected. The selected pavement sites represent flexible, rigid, and composite pavement systems throughout Iowa. The required MEPDG inputs and the historical performance data for the selected sites were extracted from a variety of sources. The accuracy of the nationally-calibrated MEPDG prediction models for Iowa conditions was evaluated. The local calibration factors of MEPDG performance prediction models were identified to improve the accuracy of model predictions. The identified local calibration coefficients are presented with other significant findings and recommendations for use in MEPDG/DARWin-ME for Iowa pavement systems.
Resumo:
This study aims to improve the accuracy of AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) pavement performance predictions for Iowa pavement systems through local calibration of MEPDG prediction models. A total of 130 representative pavement sites across Iowa were selected. The selected pavement sites represent flexible, rigid, and composite pavement systems throughout Iowa. The required MEPDG inputs and the historical performance data for the selected sites were extracted from a variety of sources. The accuracy of the nationally-calibrated MEPDG prediction models for Iowa conditions was evaluated. The local calibration factors of MEPDG performance prediction models were identified to improve the accuracy of model predictions. The identified local calibration coefficients are presented with other significant findings and recommendations for use in MEPDG/DARWin-ME for Iowa pavement systems.
Resumo:
Aerodynamic balances are employed in wind tunnels to estimate the forces and moments acting on the model under test. This paper proposes a methodology for the assessment of uncertainty in the calibration of an internal multi-component aerodynamic balance. In order to obtain a suitable model to provide aerodynamic loads from the balance sensor responses, a calibration is performed prior to the tests by applying known weights to the balance. A multivariate polynomial fitting by the least squares method is used to interpolate the calibration data points. The uncertainties of both the applied loads and the readings of the sensors are considered in the regression. The data reduction includes the estimation of the calibration coefficients, the predicted values of the load components and their corresponding uncertainties, as well as the goodness of fit.
Resumo:
The calibration coefficients of several models of cup and propeller anemometers were analysed. The analysis was based on a series of laboratory calibrations between January 2003 and August 2007. Mean and standard deviation values of calibration coefficients from the anemometers studied were included. Two calibration procedures were used and compared. In the first, recommended by the Measuring network of Wind Energy Institutes (MEASNET), 13 measurement points were taken over a wind speed range of 4 to 16 m s−1. In the second procedure, 9 measurement points were taken over a wider speed range of 4 to 23 m s−1. Results indicated no significant differences between the two calibration procedures applied to the same anemometer in terms of measured wind speed and wind turbines' Annual Energy Production (AEP). The influence of the cup anemometers' design on the calibration coefficients was also analysed. The results revealed that the slope of the calibration curve, if based on the rotation frequency and not the anemometer's output frequency, seemed to depend on the cup center rotation radius.
Resumo:
The Mechanistic-Empirical Pavement Design Guide (MEPDG) was developed under National Cooperative Highway Research Program (NCHRP) Project 1-37A as a novel mechanistic-empirical procedure for the analysis and design of pavements. The MEPDG was subsequently supported by AASHTO’s DARWin-ME and most recently marketed as AASHTOWare Pavement ME Design software as of February 2013. Although the core design process and computational engine have remained the same over the years, some enhancements to the pavement performance prediction models have been implemented along with other documented changes as the MEPDG transitioned to AASHTOWare Pavement ME Design software. Preliminary studies were carried out to determine possible differences between AASHTOWare Pavement ME Design, MEPDG (version 1.1), and DARWin-ME (version 1.1) performance predictions for new jointed plain concrete pavement (JPCP), new hot mix asphalt (HMA), and HMA over JPCP systems. Differences were indeed observed between the pavement performance predictions produced by these different software versions. Further investigation was needed to verify these differences and to evaluate whether identified local calibration factors from the latest MEPDG (version 1.1) were acceptable for use with the latest version (version 2.1.24) of AASHTOWare Pavement ME Design at the time this research was conducted. Therefore, the primary objective of this research was to examine AASHTOWare Pavement ME Design performance predictions using previously identified MEPDG calibration factors (through InTrans Project 11-401) and, if needed, refine the local calibration coefficients of AASHTOWare Pavement ME Design pavement performance predictions for Iowa pavement systems using linear and nonlinear optimization procedures. A total of 130 representative sections across Iowa consisting of JPCP, new HMA, and HMA over JPCP sections were used. The local calibration results of AASHTOWare Pavement ME Design are presented and compared with national and locally calibrated MEPDG models.
Resumo:
This airborne hyperspectral (19 bands) image data of Heron Reef, Great Barrier Reef, Australia is derived from Compact Airborne Spectrographic Imager (CASI) data acquired on 1st and 3rd of July 2002, latitude -23.45, longitude 151.92. Processing and correction to at-surface data was completed by Karen Joyce (Joyce, 2004). Raw imagery consisted several images corresponding to the number of flight paths taken to cover the entire Heron Reef. Spatial resolution is one meter. Radiometric corrections converted the at-sensor digital number values to at surface spectral radiance values using sensor specific calibration coefficients and CSIRO's c-WomBat-c atmospheric correction software. Geometric corrections were done using field collected coordinates of features identified in the image. Projection used was Universal Transverse Mercator Zone 56 South and Datum used was WGS 84. Image data is in TIFF format.
Resumo:
The deviation of calibration coefficients from five cup anemometer models over time was analyzed. The analysis was based on a series of laboratory calibrations between January 2001 and August 2010. The analysis was performed on two different groups of anemometers: (1) anemometers not used for any industrial purpose (that is, just stored); and (2) anemometers used in different industrial applications (mainly in the field—or outside—applications like wind farms). Results indicate a loss of performance of the studied anemometers over time. In the case of the unused anemometers the degradation shows a clear pattern. In the case of the anemometers used in the field, the data analyzed also suggest a loss of performance, yet the degradation does not show a clear trend. A recalibration schedule is proposed based on the observed performances variations
Resumo:
The calibration coefficients of two commercial anemometers equipped with different rotors were studied. The rotor cups had the same conical shape, while the size and distance to the rotation axis varied.The analysis was based on the 2-cup positions analytical model, derived using perturbation methods to include second-order effects such as pressure distribution along the rotating cups and friction.Thecomparison with the experimental data indicates a nonuniformdistribution of aerodynamic forces on the rotating cups, with higher forces closer to the rotating axis. The 2-cup analytical model is proven to be accurate enough to study the effect of complex forces on cup anemometer performance.
Resumo:
Spectral sensors are a wide class of devices that are extremely useful for detecting essential information of the environment and materials with high degree of selectivity. Recently, they have achieved high degrees of integration and low implementation cost to be suited for fast, small, and non-invasive monitoring systems. However, the useful information is hidden in spectra and it is difficult to decode. So, mathematical algorithms are needed to infer the value of the variables of interest from the acquired data. Between the different families of predictive modeling, Principal Component Analysis and the techniques stemmed from it can provide very good performances, as well as small computational and memory requirements. For these reasons, they allow the implementation of the prediction even in embedded and autonomous devices. In this thesis, I will present 4 practical applications of these algorithms to the prediction of different variables: moisture of soil, moisture of concrete, freshness of anchovies/sardines, and concentration of gasses. In all of these cases, the workflow will be the same. Initially, an acquisition campaign was performed to acquire both spectra and the variables of interest from samples. Then these data are used as input for the creation of the prediction models, to solve both classification and regression problems. From these models, an array of calibration coefficients is derived and used for the implementation of the prediction in an embedded system. The presented results will show that this workflow was successfully applied to very different scientific fields, obtaining autonomous and non-invasive devices able to predict the value of physical parameters of choice from new spectral acquisitions.
Resumo:
Time Series Analysis of multispectral satellite data offers an innovative way to extract valuable information of our changing planet. This is now a real option for scientists thanks to data availability as well as innovative cloud-computing platforms, such as Google Earth Engine. The integration of different missions would mitigate known issues in multispectral time series construction, such as gaps due to clouds or other atmospheric effects. With this purpose, harmonization among Landsat-like missions is possible through statistical analysis. This research offers an overview of the different instruments from Landsat and Sentinel missions (TM, ETM, OLI, OLI-2 and MSI sensors) and products levels (Collection-2 Level-1 and Surface Reflectance for Landsat and Level-1C and Level-2A for Sentinel-2). Moreover, a cross-sensors comparison was performed to assess the interoperability of the sensors on-board Landsat and Sentinel-2 constellations, having in mind a possible combined use for time series analysis. Firstly, more than 20,000 pairs of images almost simultaneously acquired all over Europe were selected over a period of several years. The study performed a cross-comparison analysis on these data, and provided an assessment of the calibration coefficients that can be used to minimize differences in the combined use. Four of the most popular vegetation indexes were selected for the study: NDVI, EVI, SAVI and NDMI. As a result, it is possible to reconstruct a longer and denser harmonized time series since 1984, useful for vegetation monitoring purposes. Secondly, the spectral characteristics of the recent Landsat-9 mission were assessed for a combined use with Landsat-8 and Sentinel-2. A cross-sensor analysis of common bands of more than 3,000 almost simultaneous acquisitions verified a high consistency between datasets. The most relevant discrepancy has been observed in the blue and SWIRS bands, often used in vegetation and water related studies. This analysis was supported with spectroradiometer ground measurements.
Resumo:
The knowledge of soil water storage (SWS) of soil profiles is crucial for the adoption of vegetation restoration practices. With the aim of identifying representative sites to obtain the mean SWS of a watershed, a time stability analysis of neutron probe evaluations of SWS was performed by the means of relative differences and Spearman rank correlation coefficients. At the same time, the effects of different neutron probe calibration procedures were explored on time stability analysis. mean SWS estimation. and preservation of the spatial variability of SWS. The selected watershed, with deep gullies and undulating slopes which cover an area of 20 ha, is characterized by an Ust-Sandiic Entisol and an Aeolian sandy soil. The dominant vegetation species are bunge needlegrass (Stipa bungeana Trim) and korshinsk peashrub (Carugano Korshinskii kom.). From June 11, 2007 to July 23,2008, SWS of the top1 m soil layer was evaluated for 20 dates, based on neutron probe data of 12 sampling sites. Three calibration procedures were employed: type 1, most complete, with each site having its own linear calibration equation (TrE); type II. with TrE equations extended over the whole field: and type III, with one single linear calibration curve for the whole field (UnE) and also correcting its intercept based on site specific relative difference analysis (RdE) and on linear fitting of data (RcE), both maintaining the same slope. A strong time stability of SWS estimated by TrE equations was identified. Soil particle size and soil organic matter content were recognized as the influencing factors for spatial variability of SWS. Land use influenced neither the spatial variability nor the time stability of SWS. Time stability analysis identified one site to represent the mean SWS of the whole watershed with mean absolute percentage errors of less than 10%, therefore. this site can be used as a predictor for the mean SWS of the watershed. Some equations of type II were found to be unsatisfactory to yield reliable mean SWS values or in preserving the associated soil spatial variability. Hence, it is recommended to be cautious in extending calibration equations to other sites since they might not consider the field variability. For the equations with corrected intercept (type III), which consider the spatial variability of calibration in a different way in relation to TrE, it was found that they can yield satisfactory means and standard deviation of SWS, except for the RdE equations, which largely leveled off the SWS values in the watershed. Correlation analysis showed that the neutron probe calibration was linked to soil bulk density and to organic matter content. Therefore, spatial variability of soil properties should be taken into account during the process of neutron probe calibration. This study provides useful information on the mean SWS observation with a time stable site and on distinct neutron probe calibration procedures, and it should be extended to soil water management studies with neutron probes, e.g., the process of vegetation restoration in wider area and soil types of the Loess Plateau in China. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A thorough literature review about the current situation on the implementation of eye lens monitoring has been performed in order to provide recommendations regarding dosemeter types, calibration procedures and practical aspects of eye lens monitoring for interventional radiology personnel. Most relevant data and recommendations from about 100 papers have been analysed and classified in the following topics: challenges of today in eye lens monitoring; conversion coefficients, phantoms and calibration procedures for eye lens dose evaluation; correction factors and dosemeters for eye lens dose measurements; dosemeter position and influence of protective devices. The major findings of the review can be summarised as follows: the recommended operational quantity for the eye lens monitoring is H p (3). At present, several dosemeters are available for eye lens monitoring and calibration procedures are being developed. However, in practice, very often, alternative methods are used to assess the dose to the eye lens. A summary of correction factors found in the literature for the assessment of the eye lens dose is provided. These factors can give an estimation of the eye lens dose when alternative methods, such as the use of a whole body dosemeter, are used. A wide range of values is found, thus indicating the large uncertainty associated with these simplified methods. Reduction factors from most common protective devices obtained experimentally and using Monte Carlo calculations are presented. The paper concludes that the use of a dosemeter placed at collar level outside the lead apron can provide a useful first estimate of the eye lens exposure. However, for workplaces with estimated annual equivalent dose to the eye lens close to the dose limit, specific eye lens monitoring should be performed. Finally, training of the involved medical staff on the risks of ionising radiation for the eye lens and on the correct use of protective systems is strongly recommended.
Resumo:
In order to validate the Geant4 toolkit for dosimetry applications, simulations were performed to calculate conversion coefficients h(10, alpha) from air kerma free-in-air to personal dose equivalent Hp(10, a). The simulations consisted of two parts: the production of X-rays with radiation qualities of narrow and wide spectra, and the interaction of radiation with ICRU tissue-equivalent and ISO water slab phantoms. The half-value layers of the X-ray spectra obtained by simulation were compared with experimental results. Mean energy, spectral resolution, half-value layers and conversion coefficients were compared with ISO reference values. The good agreement between results from simulation and reference data shows that the Geant4 is suitable for dosimetry applications which involve photons with energies in the range of ten to a few hundreds of keV. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This is the second part of a study investigating a model-based transient calibration process for diesel engines. The first part addressed the data requirements and data processing required for empirical transient emission and torque models. The current work focuses on modelling and optimization. The unexpected result of this investigation is that when trained on transient data, simple regression models perform better than more powerful methods such as neural networks or localized regression. This result has been attributed to extrapolation over data that have estimated rather than measured transient air-handling parameters. The challenges of detecting and preventing extrapolation using statistical methods that work well with steady-state data have been explained. The concept of constraining the distribution of statistical leverage relative to the distribution of the starting solution to prevent extrapolation during the optimization process has been proposed and demonstrated. Separate from the issue of extrapolation is preventing the search from being quasi-static. Second-order linear dynamic constraint models have been proposed to prevent the search from returning solutions that are feasible if each point were run at steady state, but which are unrealistic in a transient sense. Dynamic constraint models translate commanded parameters to actually achieved parameters that then feed into the transient emission and torque models. Combined model inaccuracies have been used to adjust the optimized solutions. To frame the optimization problem within reasonable dimensionality, the coefficients of commanded surfaces that approximate engine tables are adjusted during search iterations, each of which involves simulating the entire transient cycle. The resulting strategy, different from the corresponding manual calibration strategy and resulting in lower emissions and efficiency, is intended to improve rather than replace the manual calibration process.
Resumo:
The MBT-CBT proxy for the reconstruction of paleotemperatures and past soil pH is based on the distribution of branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids. The Methylation of Branched Tetraether (MBT) and the Cyclisation of Branched Tetraether (CBT) indices were developed to quantify these distributions, and significant empirical relations between these indices and annual mean air temperature (MAT) and/or soil pH were found in a large data set of soils. In this study, we extended this soil dataset to 278 globally distributed surface soils. Of these soils, 26% contains all nine brGDGTs, while in 63% of the soils the seven most common brGDGTs were detected, and the latter were selected for calibration purposes. This resulted in new transfer functions for the reconstruction of pH based on the CBT index: pH = 7.90-1.97 × CBT (r**2 = 0.70; RMSE = 0.8; n = 176), as well as for MAT based on the CBT index and methylation index based on the seven most abundant GDGTs (defined as MBT'): MAT = 0.81-5.67 × CBT + 31.0 × MBT' (r**2 = 0.59; RMSE = 5.0 °C; n = 176). The new transfer function for MAT has a substantially lower correlation coefficient than the original equation (r**2 = 0.77). To investigate possible improvement of the correlation, we used our extended global surface soil dataset to statistically derive the indices that best describe the relations of brGDGT composition with MAT and soil pH. These new indices, however, resulted in only a relatively minor increase in correlation coefficients, while they cannot be explained straightforwardly by physiological mechanisms. The large scatter in the calibration cannot be fully explained by local factors or by seasonality, but MAT for soils from arid regions are generally substantially (up to 20 °C) underestimated, suggesting that absolute brGDGT-based temperature records for these areas should be interpreted with caution. The applicability of the new MBT'-CBT calibration function was tested using previously published MBT-CBT-derived paleotemperature records covering the last deglaciation in Central Africa and East Asia, the Eocene-Oligocene boundary and the Paleocene-Eocene thermal maximum. The results show that trends remain similar in all records, but that absolute temperature estimates and the amplitude of temperature changes are lower for most records, and generally in better agreement with independent proxy data.