944 resultados para CLOSTRIDIUM SPORES
Resumo:
Elephant grass (Pennisetum purpureum Schum.), was cut after nine weeks of regrowth and mixed with 10, 20, 30 and 40% of sugar cane bagasse (SCB) with the objective of reducing the moisture content of the ensiled mass. Willing of the grass for eight and twelve hours was used as a comparative treatment. Initial dry matter of the grass (13%) increased in the forage mass to 17, 23, 24 and 27% by the addition of 10, 20, 30 and 40% of the SCB respectively. Wilting for eight and twelve hours increased initial dry matter to 18 and 24% respectively. Buffering capacity of elephant grass was reduced by the addition of 40% of SCB. Clostridium spores in the ensiled mass tended to be lower due to the effect of the two pre-treatments. Initial dry matter and number of spores of Clostridium were negatively correlated although without statistic significance. The addition of SCB reduced (P < 0.0.5) soluble carbohydrates and crude protein percentages in the ensiled mass. It was concluded that wilting is more effective than the addition of SCB in the practice of ensiling elephant grass.
Resumo:
Cost effective control of avian diseases and food borne pathogens remains a high priority for all sectors of the poultry industry with cleansing and disinfection, vaccination and competitive exclusion approaches being used widely. Previous studies showed that Bacillus subtilis PY79(hr) was an effective competitive exclusion agent for use in poultry to control avian pathogenic Escherichia coli serotype O78:K80. Here we report experiments that were undertaken to test the efficacy of B. subtilis PY79(hr) in the control of Salmonella enterica serotype Enteritidis and Clostridium perfringens in young chickens. To do this, 1-day-old and 20-day-old specific pathogen free (SPF) chicks were dosed with a suspension of B. subtilis spores prior to challenge with S. Enteritidis (S1400) and C. perfringens, respectively. For both challenge models, a single oral inoculum of 1 x 10(9) spores given 24 h prior to challenge was sufficient to suppress colonisation and persistence of both S. Enteritidis and C perfringens. In particular, the faecal shedding of S. Enteritidis, as measured by a semi-quantitative cloacal swabbing technique, was reduced significantly for the 36 days duration of the experiment. B. subtilis persisted in the intestine although with decreasing numbers over the same period. These data add further evidence that B. subtilis spores may be effective agents in the control of avian diseases and food borne pathogens.
Resumo:
The isolation of Clostridium botulinum from honey samples is described. Botulism is characterized as an intoxication provoked by ingestion of contaminated foods with this toxin. Infant botulism happens by the ingestion of spores of C. botulinum together with food that in special conditions of the intestinal tract, such as those present in babies of less than 1 year old, will allow the germination and colonization of the intestine with production and absorption of botulinic toxin. The samples were subjected to dilution and to a thermal shock and cultivated in modified CMM (Difco). Cultures were subjected to Gram smears and toxicity tests in mice. The toxic cultures were purified in RFCA (Oxoid) plates and incubated in anaerobic jars. Positive samples were typed using the mouse assay neutralization test. From the 85 honey samples analyzed, six were positive for C. botulinum (7.06%), and identified as producers of type A, B, and D toxins.
Resumo:
BACKGROUND: Clostridium perfringens type A food poisoning is caused by enterotoxigenic C. perfringens type A isolates that typically possess high spore heat-resistance. The molecular basis for C. perfringens spore heat-resistance remains unknown. In the current study, we investigated the role of small, acid-soluble spore proteins (SASPs) in heat-resistance of spores produced by C. perfringens food poisoning isolates. RESULTS: Our current study demonstrated the presence of all three SASP-encoding genes (ssp1, 2 and 3) in five surveyed C. perfringens clinical food poisoning isolates. beta-Glucuronidase assay showed that these ssp genes are expressed specifically during sporulation. Consistent with these expression results, our study also demonstrated the production of SASPs by C. perfringens food poisoning isolates. When the heat sensitivities of spores produced by a ssp3 knock-out mutant of a C. perfringens food poisoning isolate was compared with that of spores of the wild-type strain, spores of the ssp3 mutant were found to exhibit a lower decimal reduction value (D value) at 100 degrees C than exhibited by the spores of wild-type strain. This effect was restored by complementing the ssp3 mutant with a recombinant plasmid carrying wild-type ssp3, suggesting that the observed differences in D values between spores of wild-type versus ssp3 mutant was due to the specific inactivation of ssp3. Furthermore, our DNA protection assay demonstrated that C. perfringens SASPs can protect DNA from DNase I digestion. CONCLUSION: The results from our current study provide evidences that SASPs produced by C. perfringens food poisoning isolates play a role in protecting their spores from heat-damage, which is highly significant and relevant from a food safety perspective. Further detailed studies on mechanism of action of SASPs from C. perfringens should help in understanding the mechanism of protection of C. perfringens spores from heat-damage.
Resumo:
At head of title: The University of Michigan, College of Engineering, Dept. of Chemical and Metallurgical Engineering. Final report.
Resumo:
The sporicidal activity of an odour-free peracetic acid-based disinfectant (Wofasteril®) and a widely-used dichloroisocyanurate preparation (Chlor-clean®) was assessed against spores of the hyper-virulent strain of Clostridium difficile (ribotype 027), in the presence and absence of organic matter. In environmentally clean conditions, dichloroisocyanurate achieved a >3 log10 reduction in 3 minutes, but a minimum contact time of 9 minutes was required to reduce the viable spore load to below detection levels. Peracetic acid achieved a >3 log10 reduction in 30 minutes and was overall significantly less effective (P<0.05). However, in the presence of organic matter - which reflects the true clinical environment - there was no significant difference between the sporicidal activity of dichloroisocyanurate and peracetic acid over a 60-minute period (P=0.188). Given the greater occupational health hazards generally associated with chlorine-releasing agents, odour-free peracetic acid-based disinfectants may offer a suitable alternative for environmental disinfection.
Resumo:
AIMS: To investigate the influence of chemical and physical factors on the rate and extent of germination of Clostridium difficile spores. METHODS AND RESULTS: Germination of C. difficile spores following exposure to chemical and physical germinants was measured by loss of either heat or ethanol resistance. Sodium taurocholate and chenodeoxycholate initiated germination together with thioglycollate medium at concentrations of 0.1-100 mmol l(-1) and 10-100 mmol l(-1) respectively. Glycine (0.2% w/v) was a co-factor required for germination with sodium taurocholate. There was no significant difference in the rate of germination of C. difficile spores in aerobic and anaerobic conditions (P > 0.05) however, the initial rate of germination was significantly increased at 37 degrees C compared to 20 degrees C (P < 0.05). The optimum pH range for germination was 6.5-7.5, with a decreased rate and extent of germination occurring at pH 5.5 and 8.5. CONCLUSIONS: This study demonstrates that sodium taurocholate and chenodeoxycholate initiate germination of C. difficile spores and is concentration dependant. Temperature and pH influence the rate and extent of germination. SIGNIFICANCE AND IMPACT OF THE STUDY: This manuscript enhances the knowledge of the factors influencing the germination of C. difficile spores. This may be applied to the development of potential novel strategies for the prevention of C. difficile infection.
Resumo:
OBJECTIVES: Persistent contamination of surfaces by spores of Clostridium difficile is a major factor influencing the spread of C. difficile-associated diarrhoea (CDAD) in the clinical setting. In recent years, the antimicrobial efficacy of metal surfaces has been investigated against microorganisms including methicillin-resistant Staphylococcus aureus. This study compared the survival of C. difficile on stainless steel, a metal contact surface widely used in hospitals, and copper surfaces. METHODS: Antimicrobial efficacy was assessed using a carrier test method against dormant spores, germinating spores and vegetative cells of C. difficile (NCTC 11204 and ribotype 027) over a 3 h period in the presence and absence of organic matter. RESULTS: Copper metal eliminated all vegetative cells of C. difficile within 30 min, compared with stainless steel which demonstrated no antimicrobial activity (P < 0.05). Copper significantly reduced the viability of spores of C. difficile exposed to the germinant (sodium taurocholate) in aerobic conditions within 60 min (P < 0.05) while achieving a >or=2.5 log reduction (99.8% reduction) at 3 h. Organic material did not reduce the antimicrobial efficacy of the copper surface (P > 0.05).
Resumo:
Aims: It is well established that the bile salt sodium taurocholate acts as a germinant for Clostridium difficile spores and the amino acid glycine acts as a co-germinant. The aim of this study was to determine whether any other amino acids act as co-germinants. Methods and Results: Clostridium difficile spore suspensions were exposed to different germinant solutions comprising taurocholate, glycine and an additional amino acid for 1 h before heating shocking (to kill germinating cells) or chilling on ice. Samples were then re-germinated and cultured to recover remaining viable cells. Only five amino acids out of the 19 common amino acids tested (valine, aspartic acid, arginine, histidine and serine) demonstrated co-germination activity with taurocholate and glycine. Of these, only histidine produced high levels of germination (97·9–99·9%) consistently in four strains of Cl. difficile spores. Some variation in the level of germination produced was observed between different PCR ribotypes, and the optimum concentration of amino acids with taurocholate for the germination of Cl. difficile NCTC 11204 spores was 10–100 mmol l-1. Conclusions: Histidine was found to be a co-germinant for Cl. difficile spores when combined with glycine and taurocholate. Significance and Impact of the Study: The findings of this study enhance current knowledge regarding agents required for germination of Cl. difficile spores which may be utilized in the development of novel applications to prevent the spread of Cl. difficile infection.
Resumo:
In the commercial food industry, demonstration of microbiological safety and thermal process equivalence often involves a mathematical framework that assumes log-linear inactivation kinetics and invokes concepts of decimal reduction time (DT), z values, and accumulated lethality. However, many microbes, particularly spores, exhibit inactivation kinetics that are not log linear. This has led to alternative modeling approaches, such as the biphasic and Weibull models, that relax strong log-linear assumptions. Using a statistical framework, we developed a novel log-quadratic model, which approximates the biphasic and Weibull models and provides additional physiological interpretability. As a statistical linear model, the log-quadratic model is relatively simple to fit and straightforwardly provides confidence intervals for its fitted values. It allows a DT-like value to be derived, even from data that exhibit obvious "tailing." We also showed how existing models of non-log-linear microbial inactivation, such as the Weibull model, can fit into a statistical linear model framework that dramatically simplifies their solution. We applied the log-quadratic model to thermal inactivation data for the spore-forming bacterium Clostridium botulinum and evaluated its merits compared with those of popular previously described approaches. The log-quadratic model was used as the basis of a secondary model that can capture the dependence of microbial inactivation kinetics on temperature. This model, in turn, was linked to models of spore inactivation of Sapru et al. and Rodriguez et al. that posit different physiological states for spores within a population. We believe that the log-quadratic model provides a useful framework in which to test vitalistic and mechanistic hypotheses of inactivation by thermal and other processes. Copyright © 2009, American Society for Microbiology. All Rights Reserved.
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
RESUMO: Clostridium difficile é presentemente a principal causa de doença gastrointestinal associada à utilização de antibióticos em adultos. C. difficile é uma bactéria Gram-positiva, obrigatoriamente anaeróbica, capaz de formar endósporos. Tem-se verificado um aumento dos casos de doença associada a C. difficile com sintomas mais severos, elevadas taxas de morbilidade, mortalidade e recorrência, em parte, devido à emergência de estirpes mais virulentas, mas também devido à má gestão do uso de antibióticos. C. difficile produz duas toxinas, TcdA e TcdB, que são os principais fatores de virulência e responsáveis pelos sintomas da doença. Estas são codificadas a partir do Locus de Patogenicidade (PaLoc) que codifica ainda para um regulador positivo, TcdR, uma holina, TcdE, e um regulador negativo, TcdC. Os esporos resistentes ao oxigénio são essenciais para a transmissão do organismo e recorrência da doença. A expressão dos genes do PaLoc ocorre em células vegetativas, no final da fase de crescimento exponencial, e em células em esporulação. Neste trabalho construímos dois mutantes de eliminação em fase dos genes tcdR e tcdE. Mostrámos que a auto-regulação do gene tcdR não é significativa. No entanto, tcdR é sempre necessário para a expressão dos genes presentes no PaLoc. Trabalho anterior mostrou que, com a exceção de tcdC, os demais genes do PaLoc são expressos no pré-esporo. Mostrámos aqui que TcdA é detectada à superfície do esporo maduro e que a eliminação do tcdE não influencia a acumulação de TcdA no meio de cultura ou em associação às células ou ao esporo. Estas observações têm consequências para o nosso entendimento do processo infecioso: sugeremque o esporo possa ser também um veículo para a entrega da toxina nos estágios iniciais da infecção, que TcdA possa ser libertada durante a germinação do esporo, e que o esporo possa utilizar o mesmo receptor reconhecido por TcdA para a ligação à mucosa do cólon.---------------------------ABSTRACT: Clostridium difficile is currently the major cause of antibiotic-associated gastrointestinal diseases in adults. This is a Gram-positive bacterium, endospore-forming and an obligate anaerobe that colonizes the gastrointestinal tract. Recent years have seen a rise in C. difficile associated disease (CDAD) cases, associated with more severe disease symptoms, higher rates of morbidity, mortality and recurrence, which were mostly caused due to the emergence of “hypervirulent” strains but also due to changing patterns of antibiotics use. C. difficile produces two potent toxins, TcdA and TcdB, which are the main virulence factors and the responsible for the disease symptoms. These are codified from a Pathogenicity Locus (PaLoc), composed also by the positive regulator, TcdR, the holin-like protein, TcdE, and a negative regulator, TcdC. Besides the toxins, the oxygen-resistant spores are also essential for transmission of the organism through diarrhea; moreover, spores can accumulate in the environment or in the host, which will cause disease recurrence. The expression of the PaLoc genes occurs in vegetative cells, at the end of the exponential growth phase, and in sporulating cells. In this work, we constructed two in-frame deletion mutants of tcdR and tcdE. We showed that the positive auto regulation of tcdR is not significant. However, tcdR is always necessary for the expression of the PaLoc genes. A previous work showed that, except tcdC, all the PaLoc genes are expressed in the forespore. Here, we detected TcdA at the spore surface. Furthermore, we showed that the in-frame deletion of tcdE does not affect the accumulation of TcdA in the culture medium or in association with cells or spores. This data was important for us to conclude about the infeccious process: it suggests that the spore may be the vehicle for the delivery of TcdA in early stages of infection, that TcdA may be released during spores germination and that this spore may use the same receptor recognized by TcdA to bind to the colonic mucosa.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Foram avaliadas a ocorrência e distribuição de esporos e toxinas de Clostridium botulinum tipos C e D em 300 cacimbas empregadas como bebedouro de bovinos em 130 propriedades rurais localizadas em 12 municípios do Vale do Araguaia, Estado de Goiás. A presença de esporos foi determinada indiretamente pelo cultivo em meio de cultura, seguido da inoculação e neutralização em camundongo das amostras de sedimento do interior das cacimbas, e do solo superficial e fezes de bovinos, coletadas ao seu redor. A presença de toxina foi avaliada diretamente pela inoculação em camundongo do sedimento filtrado das cacimbas, também seguida da neutralização em camundongo com antitoxinas C e D. A presença de esporos de C. botulinum foi significativamente maior (p<0,05) nas fezes de bovinos (31%), quando comparadas com os resultados das amostras de solo superficial (19%) e dos sedimentos (10%). Foram detectadas toxinas botulínicas dos tipos C, D, ou classificadas como pertencentes ao complexo CD, em seis amostras (2%) das 300 cacimbas. Das 130 propriedades trabalhadas, em 122(93,85%) foram encontrados esporos ou toxinas de Clostridium botulinum em pelo menos uma das variáveis pesquisadas, enquanto somente 8(6,15%) não apresentaram qualquer contaminação A idade e profundidade das cacimbas estiveram associadas com a freqüência de detecção de esporos e toxinas. Assim, quanto mais velhas e rasas, maior a freqüência do isolamento de esporos e toxinas. A contaminação das cacimbas do Vale do Araguaia goiano com esporos e toxinas do Clostridium botulinum tipos C e D demonstra o risco potencial permanente e crescente para a ocorrência da intoxicação botulínica de origem hídrica nos bovinos.