375 resultados para Bored piles
Resumo:
Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Estruturas
Resumo:
An experimental study has been conducted to investigate the behavior of continuous flight auger (cfa) bored piles and metalic driven H-section piles under lateral loading in cohesionless soils. The piles were tested in two different areas at the same site. Both areas consisted of a 3-m thick compacted superficial fill of pure fine sand, underlain by layers of naturally occurring pure fine-thick sand. Fills are differentiated by the relative densities which were compressed, 45% e 70%, respectively. Each area received one identical pair of cfa piles and two identical pairs of H-piles. A static lateral loading test was performed in each pair of piles. In this work, the pile load test results are reported and interpreted. The horizontal coefficient of subgrade reaction was determined from the results of the loading tests and compared with values determined by correlations based on penetration resistance index of SPT tests (NSPT). p-y formulations describing the static behavior of the piles were applied to the problem under evaluation. Back Analyses were made through theoretical and experimental p-y curves for obtaining input parameters for the analytic models, among which the coefficient of horizontal reaction. The soil pile system horizontal loading at rupture was determined by the theoretical methods and the results were compared with the experimental results, checking its validity
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
In Geotechnical engineering the foundation projects depend on the bearing capacity and the acceptable displacements. One of the possible ways to predict the bearing capacity of foundations is through semi-empirical statistical methods which correlate in-situ tests (SPT and CPT). The piles breaking loads are defined by the interpretation of the load x head displacement curve and the experimental data acquired through the load test. In this work it is studied the behavior of bored piles executed in the Araquari/SC region, comparing the bearing capacity values predicted by the methods DECOURT & QUARESMA MODIFICADO (1996), AOKI & VELLOSO MODIFICADO MONTEIRO (2000), MILITITISKY E ALVES (1985), DECOURT & QUARESMA (1978), MÉTODO DE AOKI & VELLOSO (1975) e PHILOPANNAT (1986), with the results of the load test, evaluating their differences and discussing parameters that have direct effects on the prediction
Resumo:
In Geotechnical engineering the foundation projects depend on the bearing capacity and the acceptable displacements. One of the possible ways to predict the bearing capacity of foundations is through semi-empirical statistical methods which correlate in-situ tests (SPT and CPT). The piles breaking loads are defined by the interpretation of the load x head displacement curve and the experimental data acquired through the load test. In this work it is studied the behavior of bored piles executed in the Araquari/SC region, comparing the bearing capacity values predicted by the methods DECOURT & QUARESMA MODIFICADO (1996), AOKI & VELLOSO MODIFICADO MONTEIRO (2000), MILITITISKY E ALVES (1985), DECOURT & QUARESMA (1978), MÉTODO DE AOKI & VELLOSO (1975) e PHILOPANNAT (1986), with the results of the load test, evaluating their differences and discussing parameters that have direct effects on the prediction
Resumo:
Poem in international anthology
Resumo:
In this paper, the axial performance of two heavily instrumented barrette piles, with and without grouting, socket into gravel layer in Taipei are evaluated based on the results of pile load tests. Both piles are 44 m long with the same dimension of 0.8 by 2.7 m, installed by hydraulic long bucket. One of the piles with toe grouting was socket 6 m into gravel layer and the other pile without toe grouting was socket 3 m into gravel layer. The load versus displacement relationships at pile head, the t-z curves of upper soil layers and of bottom gravel layer, and the tip resistance versus displacement relationships are important concerns and are presented in the paper. The t-z curves interpreted from the measured data along depth are also simulated by the hyperbolic model.
Resumo:
Increasing threat of terrorism highlights the importance of enhancing the resilience of underground tunnels to all hazards. This paper develops, applies and compares the Arbitrary Lagrangian Eulerian (ALE) and Smooth Particle Hydrodynamics (SPH) techniques to treat the response of buried tunnels to surface explosions. The results and outcomes of the two techniques were compared, along with results from existing test data. The comparison shows that the ALE technique is a better method for describing the tunnel response for above ground explosion with regards to modeling accuracy and computational efficiency. The ALE technique was then applied to treat the blast response of different types of segmented bored tunnels buried in dry sand. Results indicate that the most used modern ring type segmented tunnels were more flexible for in-plane response, however, they suffered permanent drifts between the rings. Hexagonal segmented tunnels responded with negligible drifts in the longitudinal direction, but the magnitudes of in-plane drifts were large and hence hazardous for the tunnel. Interlocking segmented tunnels suffered from permanent drifts in both the longitudinal and transverse directions. Multi-surface radial joints in both the hexagonal and interlocking segments affected the flexibility of the tunnel in the transverse direction. The findings offer significant new information in the behavior of segmented bored tunnels to guide their future implementation in civil engineering applications.
Resumo:
Underground transport tunnels are vulnerable to blast events. This paper develops and applies a fully coupled technique involving the Smooth Particle Hydrodynamics and Finite Element techniques to investigate the blast response of segmented bored tunnels. Findings indicate that several bolts failed in the longitudinal direction due to redistribution of blast loading to adjacent tunnel rings. The tunnel segments respond as arch mechanisms in the transverse direction and suffered damage mainly due to high bending stresses. The novel information from the present study will enable safer designs of buried tunnels and provide a benchmark reference for future developments in this area.
Resumo:
This study investigates the potential of Relevance Vector Machine (RVM)-based approach to predict the ultimate capacity of laterally loaded pile in clay. RVM is a sparse approximate Bayesian kernel method. It can be seen as a probabilistic version of support vector machine. It provides much sparser regressors without compromising performance, and kernel bases give a small but worthwhile improvement in performance. RVM model outperforms the two other models based on root-mean-square-error (RMSE) and mean-absolute-error (MAE) performance criteria. It also stimates the prediction variance. The results presented in this paper clearly highlight that the RVM is a robust tool for prediction Of ultimate capacity of laterally loaded piles in clay.
Resumo:
This project was an initiation to investigate slaking induced properties detrition of spoil pile materials with overburden pressure and time. The changes in the material properties over time are important parameters that control the behaviour and performance of the piles. The time dependent mechanical and hydraulic properties reported together with mineralogical changes. One chamber designed to apply slaking in the laboratory and geotechnical investigation conducted to fulfil the objective of this project.
Resumo:
Bearing capacity factor N-c for axially loaded piles in clays whose cohesion increases linearly with depth has been estimated numerically under undrained (phi=0) condition. The Study follows the lower bound limit analysis in conjunction With finite elements and linear programming. A new formulation is proposed for solving an axisymmetric geotechnical stability problem. The variation of N-c with embedment ratio is obtained for several rates of the increase of soil cohesion with depth; a special case is also examined when the pile base was placed on the stiff clay stratum overlaid by a soft clay layer. It was noticed that the magnitude of N-c reaches almost a constant value for embedment ratio greater than unity. The roughness of the pile base and shaft affects marginally the magnitudes of N-c. The results obtained from the present study are found to compare quite well with the different numerical solutions reported in the literature.