31 resultados para Baffles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study a new immobilized flat plate photocatalytic reactor for wastewater treatment has been investigated using computational fluid dynamics (CFD). The reactor consists of a reactor inlet, a reactive section where the catalyst is coated, and outlet parts. For simulation, the reactive section of the reactor was modelled with an array of baffles. In order to optimize the fluid mixing and reactor design, this study attempts to investigate the influence of baffles with differing heights on the flow field of the flat plate reactor. The results obtained from the simulation of a baffled flat plate reactor hydrodynamics for differing baffle heights for certain positions are presented. Under the conditions simulated, the qualitative flow features, such as the distribution of local stream lines, velocity contours, and high shear region, boundary layers separation, vortex formation, and the underlying mechanism are examined. At low and high Re numbers, the influence of baffle heights on the distribution of species mass fraction of a model pollutant are also highlighted. The simulation of qualitative and quantitative properties of fluid dynamics in a baffled reactor provides valuable insight to fully understand the effect of baffles and their role on the flow pattern, behaviour, and features of wastewater treatment using a photocatalytic reactor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the years, grinding has been considered one of the most important manufacturing processes. Grinding is a high precision process, and the loss of a single workpiece in this stage of the production is unacceptable, fir the value added to the material is very high due to many processes it has already undergone prior to grinding. This study aims to contribute toward the development of an experimental methodology whereby the pressure and speed of the air layer produced by the high rotation of the grinding wheel is evaluated with and without baffles, i.e., in an optimized grinding operation and in a traditional one. Tests were also carried out with steel samples to check the difference in grinding wheel wear with and without the use of baffles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work design criteria for cooling of electronic systems used in a digital transmission equipment are considered. An experimental study using a simulated electronic equipment in which vertically oriented circuit boards are aligned to form vertical channels is carried out. Resistors are used to simulate actual components. The temperature of several components in the printed circuit boards are measured and the influence of the baffles and shields on the cooling effect are discussed. It was observed that the use of the baffles reduce the temperature levels and, the use of shields, although protecting the components from magnetic effects, cause an increase in the temperature levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is concerned with the sloshing motion of water in a moonpool. It is a relatively new problem, that is particularly predominant in moonpools with relatively large dimensions. The problem is further complicated by the additional behaviour of vertical oscillation. It is inevitable that large moonpools will be needed as offshore technology advances, therefore making a problem an important one. The research involves two parts, the theoretical and experimental study. The theoretical study consists of idealising the moonpool to a two dimensional system, represented by two surface piercing parallel barriers at a distance 2a apart. The barriers are forced to undergo roll motion which in turn generates waves. These travelling waves are travelling in opposite directions to each other and have the same amplitude and period, and thus can be expressed in terms of a standing wave. This is mathematically achieved by applying the theory of wavemaking, and therefore the wave amplitude at the side wall can be evaluated at near resonant conditions. The experimental study comprises of comparing the results obtained from the tank and moonpool experiments. The rolling motion creates the sloshing waves in both cases, in addition the vertical oscillation in the moonpool is produced by generating waves at one end of the towing tank. Apart from highlighting influencing parameters, the resonant frequencies obtained from these experiments are then compared with the theoretical values. Experiments in demonstrating the effect of increasing damping with the aid of baffles are also conducted. This is an important aspect which is very necessary if operations in launching and retrieving are to be carried out efficiently and safely.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new immobilized flat plate photocatalytic reactor for wastewater treatment has been proposed in this study to avoid subsequent catalyst removal from the treated water. The reactor consists of an inlet, reactive section where catalyst is coated and an outlet parts. In order to optimize the fluid mixing and reactor design, this study aims to investigate the influence of baffles and its arrangement on the flat plate reactor hydrodynamics using computational fluid dynamics (CFD) simulation. For simulation, an array of baffles acting as turbulence promoters is inserted in the reactive zone of the reactor. In this regard, results obtained from the simulation of a baffled- flat plate photoreactor hydrodynamics for different baffle positions, heights and intervals are presented utilizing RNG k-ε turbulence model. Under the conditions simulated, the qualitative flow features, such as the development and separation of boundary layers, vortex formation, the presence of high shear regions and recirculation zones, and the underlying mechanism are examined. The influence of various baffle sizes on the distribution of pollutant concentration is also highlighted. The results presented here indicate that the spanning of recirculation increases the degree of interfacial distortion with a larger interfacial area between fluids which results in substantial enhancement in fluid mixing. The simulation results suggest that the qualitative and quantitative properties of fluid dynamics in a baffled reactor can be obtained which provides valuable insight to fully understand the effect of baffles and its arrangements on the flow pattern, behaviour, and feature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The majority of computational studies of confined explosion hazards apply simple and inaccurate combustion models, requiring ad hoc corrections to obtain realistic flame shapes and often predicting an order of magnitude error in the overpressures. This work describes the application of a laminar flamelet model to a series of two-dimensional test cases. The model is computationally efficient applying an algebraic expression to calculate the flame surface area, an empirical correlation for the laminar flame speed and a novel unstructured, solution adaptive numerical grid system which allows important features of the solution to be resolved close to the flame. Accurate flame shapes are predicted, the correct burning rate is predicted near the walls, and an improvement in the predicted overpressures is obtained. However, in these fully turbulent calculations the overpressures are still too high and the flame arrival times too low, indicating the need for a model for the early laminar burning phase. Due to the computational expense, it is unrealistic to model a laminar flame in the complex geometries involved and therefore a pragmatic approach is employed which constrains the flame to propagate at the laminar flame speed. Transition to turbulent burning occurs at a specified turbulent Reynolds number. With the laminar phase model included, the predicted flame arrival times increase significantly, but are still too low. However, this has no significant effect on the overpressures, which are predicted accurately for a baffled channel test case where rapid transition occurs once the flame reaches the first pair of baffles. In a channel with obstacles on the centreline, transition is more gradual and the accuracy of the predicted overpressures is reduced. However, although the accuracy is still less than desirable in some cases, it is much better than the order of magnitude error previously expected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The methane hydration process is investigated in a semi-continuous stirred tank reactor. Liquid temperatures and reaction rates without stirrer are compared with those occurring with stirrer, while at the same time better stirring conditions of the methane hydration process are given by the experiments. Some basic data of fluid mechanics, for example, stirring Reynolds number, Froucle number and stirrer power, are calculated during the methane hydration process, which can be applied to evaluate stirrer capacity and provide some basic data for a scaled up reactor. Based on experiment and calculations in this work, some conclusions are drawn. First, the stirrer has great influence on the methane hydration process. Batch stirring is helpful to improve the mass transfer and heat transfer performances of the methane hydration process. Second, induction time can be shortened effectively by use of the stirrer. Third, in this paper, the appropriate stirring velocity and stirring time were 320 rpm and 30 min, respectively, at 5.0 MPa, for which the storage capacity and reaction time were 159.1 V/V and 370 min, respectively. Under the condition of the on-flow state, the initial stirring Reynolds number of the fluid and the stirring power were 12,150 and 0.54 W, respectively. Fourth, some suggestions, for example, the use of another type of stirrer or some baffles, are proposed to accelerate the methane hydration process. Comparing with literature data, higher storage capacity and hydration rate are achieved in this work. Moreover, some fluid mechanics parameters are calculated, which can provide some references to engineering application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The water treatment capability of a novel photocatalytic slurry reactor was investigated using methylene blue (MB) as a model pollutant in an aqueous suspension. A pellet TiO 2 catalyst was employed and this freed the system from the need of filtration of catalyst following photocatalysis. This configuration combines the high surface area contact of catalyst with pollutant of the slurry reactor and also offers a high illumination of catalyst by its unique array of weir-like baffles. In this work, the batch adsorption of MB from aqueous solution (10μM) onto the TiO 2 catalyst was studied, adsorption isotherms and kinetics were determined from the experimental data. Complete degradation of MB was achieved within 60 min illumination with various loadings of catalyst (30-200 g L -1). A modest catalyst loading (30 g L -1) achieved 98% degradation within 60 min of irradiation. Experimental results indicate that this novel reactor configuration has a high effective mass transfer rate and UV light penetration characteristics. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work, the author has designed and developed all types of solar air heaters called porous and nonporous collectors. The developed solar air heaters were subjected to different air mass flow rates in order to standardize the flow per unit area of the collector. Much attention was given to investigate the performance of the solar air heaters fitted with baffles. The output obtained from the experiments on pilot models, helped the installation of solar air heating system for industrial drying applications also. Apart from these, various types of solar dryers, for small and medium scale drying applications, were also built up. The feasibility of ‘latent heat thermal energy storage system’ based on Phase Change Material was also undertaken. The application of solar greenhouse for drying industrial effluent was analyzed in the present study and a solar greenhouse was developed. The effectiveness of Computational Fluid Dynamics (CFD) in the field of solar air heaters was also analyzed. The thesis is divided into eight chapters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was the development of miniaturized structures useful for retention and/or selection of particles and viscous substances from a liquid flow. The proposed low costs structures are similar to macroscopic wastewater treatment systems, named baffles, and allow disassemble. They were simulated using FEMLAB 3.2b package and manufactured in acrylic with conventional tools. Tests for retention or selection of particles in water or air and viscous fluids in water were carried out. Either in air or water particles with 50 mu m diameter will be retained but not with 13 mu m diameter. In aqueous flow, it is also possible the retention of viscous samples, such as silicone 350 cSt. The simulated results showed good agreement with experimental measurements. These miniaturized structures can be useful in sample pretreatment for chemical analysis and microorganism manipulation. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classical shell-and-tube heat exchangers are usually equipped with segmental baffles. These baffles serve two basic functions: (a) they provide tube supports, thereby preventing or reducing mechanical problems, such as sagging or vibration; (b) they direct the fluid flow over the tubes so as to introduce a cross-flow component, thereby increasing the heat transfer. Segmented baffles have several sources of performance loss, some due to various leakage flows and others caused by stagnation zones. A new concept of longitudinal flow heat exchanger - based on placing twisted tapes along the tube bundle subchannels - was developed to mitigate drawbacks of other types of tubular heat exchangers. In this paper, a numerical model has been implemented in order to simulate the thermal-hydraulic feature of tubular heat exchangers equipped either with segmental baffles or with subchannel twisted tapes. The tube bundle has been described by means of an equivalent porous medium type model, allowing a macroscopic description of the shell-side flow. The basic equations - continuity, momentum and energy - have been solved by using the finite volume method. Typical numerical results have been compared with experimental data, reaching a very good agreement. A comparative analysis of different types of heat exchangers has been carried out, revealing the satisfactory thermal-hydraulic efficiency level of the twisted tapes heat exchangers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conventional, grinding methods in some cases are not very efficient because the arising of thermal damages in the pieces is very common. Optimization methods of cutting fluid application in the grinding zone are essential to prevent thermal problems from interaction of the wheel grains with the workpiece. surface. The optimization can happen through the correct selection of the cut parameters and development of devices that eliminate air layer effects generated around the grinding wheel. This article will collaborate with the development of an experimentation methodology which allows evaluating, comparatively, the performance of the deflectors in the cutting region to minimize the air layer effect of the high speed of the grinding wheel. The air layers make the cutting fluid jet to dissipate in the machine. An optimized nozzle was used in order to compare the results with the conventional method (without baffles or deflectors) of cutting fluid application. The results showed the high eficciency of the deflectors or baffles in the finish results. Copyright © 2006 by ABCM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite being known to science for quite a long time, the phenomenon of seed dormancy still baffles the scientific community for the multiple complex underlying mechanisms. The current classification systems of seed dormancy attempt to condense all that is known about the phenomenon in an attempt to generate a conceptual database that would enable facilitated interpretation of upcoming information and allow for a better contextuation of research in this field. The present paper is a preliminary overview of the current panorama of concepts and classification systems of seed dormancy that intends to serve as a standpoint for future research in this field.