980 resultados para BOLOGNA STONE
Resumo:
In 1603, the Italian shoemaker Vincenzo Cascariolo found that a stone (baryte) from the outskirts of Bologna emitted light in the dark without any external excitation source. However, the calcination of the baryte was needed prior to this observation. The stone later named as the Bologna Stone was among the first luminescent materials and the first documented material to show persistent luminescence. The mechanism behind the persistent emission in this material has remained a mystery ever since. In this work, the Bologna Stone (BaS) was prepared from the natural baryte (Bologna, Italy) used by Cascariolo. Its properties, e. g. impurities (dopants) and their valences, luminescence, persistent luminescence and trap structure, were compared to those of the pure BaS materials doped with different (transition) metals (Cu, Ag, Pb) known to yield strong luminescence. The work was carried out by using different methods (XANES, TL, VUV-UV-vis luminescence, TGA-DTA, XPD). A plausible mechanism for the persistent luminescence from the Bologna Stone with Cu+ as the emitting species was constructed based on the results obtained. The puzzle of the Bologna Stone can thus be considered as resolved after some 400 years of studies.
Resumo:
La tesi tratta di strumenti finalizzati alla valutazione dello stato conservativo e di supporto all'attività di manutenzione dei ponti, dai più generali Bridge Management Systems ai Sistemi di Valutazione Numerica della Condizione strutturale. Viene proposto uno strumento originale con cui classificare i ponti attraverso un Indice di Valutazione Complessiva e grazie ad esso stabilire le priorità d'intervento. Si tara lo strumento sul caso pratico di alcuni ponti della Provincia di Bologna. Su un ponte in particolare viene realizzato un approfondimento specifico sulla determinazione approssimata dei periodi propri delle strutture da ponte. Si effettua un confronto dei risultati di alcune modellazioni semplificate in riferimento a modellazioni dettagliate e risultati sperimentali.
Resumo:
The Székesfehérvár Ruin Garden is a unique assemblage of monuments belonging to the cultural heritage of Hungary due to its important role in the Middle Ages as the coronation and burial church of the Kings of the Hungarian Christian Kingdom. It has been nominated for “National Monument” and as a consequence, its protection in the present and future is required. Moreover, it was reconstructed and expanded several times throughout Hungarian history. By a quick overview of the current state of the monument, the presence of several lithotypes can be found among the remained building and decorative stones. Therefore, the research related to the materials is crucial not only for the conservation of that specific monument but also for other historic structures in Central Europe. The current research is divided in three main parts: i) description of lithologies and their provenance, ii) physical properties testing of historic material and iii) durability tests of analogous stones obtained from active quarries. The survey of the National Monument of Székesfehérvár, focuses on the historical importance and the architecture of the monument, the different construction periods, the identification of the different building stones and their distribution in the remaining parts of the monument and it also included provenance analyses. The second one was the in situ and laboratory testing of physical properties of historic material. As a final phase samples were taken from local quarries with similar physical and mineralogical characteristics to the ones used in the monument. The three studied lithologies are: fine oolitic limestone, a coarse oolitic limestone and a red compact limestone. These stones were used for rock mechanical and durability tests under laboratory conditions. The following techniques were used: a) in-situ: Schmidt Hammer Values, moisture content measurements, DRMS, mapping (construction ages, lithotypes, weathering forms) b) laboratory: petrographic analysis, XRD, determination of real density by means of helium pycnometer and bulk density by means of mercury pycnometer, pore size distribution by mercury intrusion porosimetry and by nitrogen adsorption, water absorption, determination of open porosity, DRMS, frost resistance, ultrasonic pulse velocity test, uniaxial compressive strength test and dynamic modulus of elasticity. The results show that initial uniaxial compressive strength is not necessarily a clear indicator of the stone durability. Bedding and other lithological heterogeneities can influence the strength and durability of individual specimens. In addition, long-term behaviour is influenced by exposure conditions, fabric and, especially, the pore size distribution of each sample. Therefore, a statistic evaluation of the results is highly recommended and they should be evaluated in combination with other investigations on internal structure and micro-scale heterogeneities of the material, such as petrographic observation, ultrasound pulse velocity and porosimetry. Laboratory tests used to estimate the durability of natural stone may give a good guidance to its short-term performance but they should not be taken as an ultimate indication of the long-term behaviour of the stone. The interdisciplinary study of the results confirms that stones in the monument show deterioration in terms of mineralogy, fabric and physical properties in comparison with quarried stones. Moreover stone-testing proves compatibility between quarried and historical stones. Good correlation is observed between the non-destructive-techniques and laboratory tests results which allow us to minimize sampling and assessing the condition of the materials. Concluding, this research can contribute to the diagnostic knowledge for further studies that are needed in order to evaluate the effect of recent and future protective measures.
Resumo:
The use of stone and its types of processing have been very important in the vernacular architecture of the cross-border Carso. In Carso this represents an important legacy of centuries and has a uniform typological characteristic to a great extent. The stone was the main constituent of the local architecture, setting and shaping the human environment, incorporating the history of places through their specific symbolic and constructive language. The primary aim of this research is the recognition of the constructive rules and the values embedded in the Carso rural architecture by use and processing of stone. Central to this investigation is the typological reading, aimed to analyze the constructive language expressed by this legacy, through the analysis of the relationship between type, technique and material.
Resumo:
Natural stones have been widely used in the construction field since antiquity. Building materials undergo decay processes due to mechanical,chemical, physical and biological causes that can act together. Therefore an interdisciplinary approach is required in order to understand the interaction between the stone and the surrounding environment. Utilization of buildings, inadequate restoration activities and in general anthropogenic weathering factors may contribute to this degradation process. For this reasons, in the last few decades new technologies and techniques have been developed and introduced in the restoration field. Consolidants are largely used in restoration and conservation of cultural heritage in order to improve the internal cohesion and to reduce the weathering rate of building materials. It is important to define the penetration depth of a consolidant for determining its efficacy. Impregnation mainly depends on the microstructure of the stone (i.e. porosity) and on the properties of the product itself. Throughout this study, tetraethoxysilane (TEOS) applied on globigerina limestone samples has been chosen as object of investigation. After hydrolysis and condensation, TEOS deposits silica gel inside the pores, improving the cohesion of the grains. X-ray computed tomography has been used to characterize the internal structure of the limestone samples,treated and untreated with a TEOS-based consolidant. The aim of this work is to investigate the penetration depth and the distribution of the TEOS inside the porosity, using both traditional approaches and advanced X-ray tomographic techniques, the latter allowing the internal visualization in three dimensions of the materials. Fluid transport properties and porosity have been studied both at macroscopic scale, by means of capillary uptake tests and radiography, and at microscopic scale,investigated with X-ray Tomographic Microscopy (XTM). This allows identifying changes in the porosity, by comparison of the images before and after the treatment, and locating the consolidant inside the stone. Tests were initially run at University of Bologna, where characterization of the stone was carried out. Then the research continued in Switzerland: X-ray tomography and radiography were performed at Empa, Swiss Federal Laboratories for Materials Science and Technology, while XTM measurements with synchrotron radiation were run at Paul Scherrer Institute in Villigen.
Resumo:
The overall goal of the project is the study of effects of conservation treatments applied on stone material from archaeological sites, i n terms of superficial changes, effectiveness and durability. In this sense, one of the first premises is characterize the surface of the treated and untreated material in order to determine changes in physical and chemical properties.
Resumo:
The disintegration of stone materials used in sculpture and architecture due to the crystallization of salts is capable of irreparably damaging artistic objects and historic buildings. A number of phosphonates and carboxylates were tested here as potential crystallization modifiers for sodium carbonate crystallization. Precipitated phases during crystallization induced either by cooling or by evaporation tests were nahcolite (NaHCO3), natron (Na2CO3∙10H2O) and thermonatrite (Na2CO3∙H2O), identified using X-ray diffraction. By using the thermodynamic code PHREEQC and the calculation of the nucleation rate it was demonstrated that nahcolite had to be first phase formed during both tests. The formation of the other phases depended on the experimental conditions under which the two tests were conducted. Nahcolite nucleation is strongly inhibited in the presence of sodium citrate tribasic dihydrate (CA), polyacrylic acid 2100MW (PA) and etidronic acid (HEDP), when the additives are dosed at appropriate concentrations and the pH range of the resulting solution is about 8. Electrostatic attraction generated between the deprotonated organic additives and the cations present in solution appears to be the principal mechanism of additive-nahcolite interaction. Salt weathering tests, in addition to mercury intrusion porosimetry tests allowed to quantify the damage induced by such salts. FESEM observation of both salts grown on calcite single crystals and in limestone blocks subjected to salt crystallization tests allowed to identify the effect of these additives on crystal growth and development. The results show that PA seems to be the best inhibitor, while CA and HEDP, which show similar behaviors, are slightly less effective. The use of such effective crystallization inhibitors may lead to more efficient preventive conservation of ornamental stone affected by crystallization damage due to formation of sodium carbonate crystals.
Resumo:
This thesis focuses on finding the optimum block cutting dimensions in terms of the environmental and economic factors by using a 3D algorithm for a limestone quarry in Foggia, Italy. The environmental concerns of quarrying operations are mainly: energy consumption, material waste, and pollution. The main economic concerns are the block recovery, the selling prices, and the production costs. Fractures adversely affect the block recovery ratio. With a fracture model, block production can be optimized. In this research, the waste volume produced by quarrying was minimised to increase the recovery ratio and ensure economic benefits. SlabCutOpt is a software developed at DICAM–University of Bologna for block cutting optimization which tests different cutting angles on the x-y-z planes to offer up alternative cutting methods. The program tests several block sizes and outputs the optimal result for each entry. By using SlabCutOpt, ten different block dimensions were analysed, the results indicated the maximum number of non-intersecting blocks for each dimension. After analysing the outputs, the block named number 1 with the dimensions ‘1mx1mx1m’ had the highest recovery ratio as 43% and the total Relative Money Value (RMV) with a value of 22829. Dimension number 1, also had the lowest waste volume, with a value of 3953.25 m3, for the total bench. For cutting the total bench volume of 6932.25m3, the diamond wire cutter had the lowest dust emission values for the block with the dimension ‘2mx2mx2m’, with a value of 24m3. When compared with the Eco-Label standards, block dimensions having surface area values lower than 15m2, were found to fit the natural resource waste criteria of the label, as the threshold required 25% of minimum recovery [1]. Due to the relativity of production costs, together with the Eco-Label threshold, the research recommends the selection of the blocks with a surface area value between 6m2 and 14m2.
Resumo:
After a long incubation period, the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) is now underway. Underpinning all its activities is the IPBES Conceptual Framework (CF), a simplified model of the interactions between nature and people. Drawing on the legacy of previous large-scale environmental assessments, the CF goes further in explicitly embracing different disciplines and knowledge systems (including indigenous and local knowledge) in the co-construction of assessments of the state of the world's biodiversity and the benefits it provides to humans. The CF can be thought of as a kind of Rosetta Stone that highlights commonalities between diverse value sets and seeks to facilitate crossdisciplinary and crosscultural understanding. We argue that the CF will contribute to the increasing trend towards interdisciplinarity in understanding and managing the environment. Rather than displacing disciplinary science, however, we believe that the CF will provide new contexts of discovery and policy applications for it.
Resumo:
Bologna-type sausages were produced with 50% of their pork back-fat content replaced with gels elaborated with different ratios of pork skin, water, and amorphous cellulose (1:1:0, 1:1:0.1, 1:1:0.2, 1:1:0.3, and 1:1:0.4). The impact of such replacement on the physico-chemical characteristics and the consumer sensory profiling was evaluated. The modified treatments had 42% less fat, 18% more protein, and 8% more moisture than the control group. Treatments with amorphous cellulose had a lower cooking loss and higher emulsion stability. High amorphous cellulose content (1:1:0.3 and 1:1:0.4) increased hardness, gumminess, and chewiness. The gel formulated with the ratio of 1:1:0.2 (pork skin: water: amorphous cellulose gel) provided a sensory sensation similar to that provided by fat and allowed products of good acceptance to be obtained. Therefore, a combination of pork skin and amorphous cellulose is useful in improving technological quality and producing healthier and sensory acceptable bologna-type sausages.
Resumo:
Several impression materials are available in the Brazilian marketplace to be used in oral rehabilitation. The aim of this study was to compare the accuracy of different impression materials used for fixed partial dentures following the manufacturers' instructions. A master model representing a partially edentulous mandibular right hemi-arch segment whose teeth were prepared to receive full crowns was used. Custom trays were prepared with auto-polymerizing acrylic resin and impressions were performed with a dental surveyor, standardizing the path of insertion and removal of the tray. Alginate and elastomeric materials were used and stone casts were obtained after the impressions. For the silicones, impression techniques were also compared. To determine the impression materials' accuracy, digital photographs of the master model and of the stone casts were taken and the discrepancies between them were measured. The data were subjected to analysis of variance and Duncan's complementary test. Polyether and addition silicone following the single-phase technique were statistically different from alginate, condensation silicone and addition silicone following the double-mix technique (p < .05), presenting smaller discrepancies. However, condensation silicone was similar (p > .05) to alginate and addition silicone following the double-mix technique, but different from polysulfide. The results led to the conclusion that different impression materials and techniques influenced the stone casts' accuracy in a way that polyether, polysulfide and addition silicone following the single-phase technique were more accurate than the other materials.
Resumo:
Introduction: The occurrence of urolithiasis in pregnancy represents a challenge in both diagnosis and treatment of this condition, because it presents risks not only to the mother but also to the fetus. Surgical treatment may be indicated for patients with infection, persistent pain, and obstruction of a solitary kidney. We present our experience on the management of pregnant patients with ureteral calculi and a review of the literature. Materials and Methods: The charts of 19 pregnant patients with obstructive ureteral calculi were retrospectively reviewed. Gestational age ranged from 13 to 33 weeks. In all patients, ureteral stone was diagnosed on abdominal ultrasound. In regard to localization, 15 calculi were in the distal ureter, 3 in the proximal ureter, and 1 in the interior of an ureterocele. Calculi size ranged from 6 to 10 mm (mean, 8 mm). The following criteria were used to indicate ureteroscopy: persistent pain with no improvement after clinical treatment, increase in renal dilation, or presence of uterine contractions. Nine patients (47.3%) were submitted to ureteroscopy. All calculi (100%) were removed with a stone basket extractor under continuous endoscopic vision. None of the calculi demanded the use of a lithotriptor. Results: Nine patients (47.3%) treated with clinical measurements presented no obstetric complications and spontaneous elimination of the calculi. Nine patients (47.3%) submitted to ureteroscopy had no surgical complications. There was remission of pain in all cases after ureteroscopy and ureteral catheter placement. Conclusion: The diagnosis and treatment of ureteral lithiasis in pregnant women present potential risks for the fetus and the mother. Conservative management is the first option, but ureteroscopy may be performed with safety and high success rates.
Resumo:
The importance of a careful selection of rocks used in building facade cladding is highlighted. A simple and viable methodology for the structural detailing of dimension stones and the verification of the global performance is presented based on a Strap software simulation. The results obtained proved the applicability of the proposed structural dimensioning methodology which represents an excellent simple tool for dimensioning rock slabs used for building facade cladding. The Strap software satisfactorily simulated the structural conditions of the stone slabs under the studied conditions, allowing the determination of alternative slab dimensions and the verification of the cladding strength at the support.
Resumo:
Mechanical injuries and diseases in stone fruit are important causes for market rejection. The objectives of this research were to quantify and characterize the mechanical injuries and diseases in peaches, nectarines and plums at Sao Paulo`s wholesale market, the largest in Brazil. Incidence of injuries was assessed weekly in 1 % of the marketed fruit (2973 fruit/week), from September to December in 2003 and 2004. Mechanical injuries were the most frequent injuries in both years, ranging from 8.73% (plum) to 44.5% (nectarine) of injured fruit. There was a significant positive correlation between the incidence of postharvest mechanical injuries and postharvest diseases. Incidence of postharvest diseases varied from 2.5% to 6.6%. Cladosporium rot (Cladosporium sp.) and brown rot (Monilinia fructicola) were the most frequent diseases, and were mostly detected in the apexes of nectarines and peaches. Aurora (peach), Sunraycer (nectarine) and Gulfblaze (plum) varieties were the most susceptible to injuries and diseases. (c) 2007 Elsevier B.V. All rights reserved.