323 resultados para Arcs
Resumo:
The Australian Research Collaboration Service (ARCS) has been supporting a wide range of Collaboration Services and Tools which have been allowing researchers, groups and research communities to share ideas and collaborate across organisational boundaries.----- This talk will give an introduction to a number of exciting technologies which are now available. Focus will be on two main areas of Video Collaboration Tools, allowing researchers to talk face-to-face and share data in real-time, and Web Collaboration Tools, allowing researchers to share information and ideas with other like-minded researchers irrespective of distance or organisational structure. A number of examples will also be shown of how these technologies have been used with in various research communities.----- A brief introduction will be given to a number of services which ARCS is now operating and/or supporting such as:--- * EVO – A video conferencing application, which is particularly suited to desktop or low bandwidth applications.--- * AccessGrid – An open source video conferencing and collaboration tool kit, which is great for room to room meetings.--- * Sakai – An online collaboration and learning environment, support teaching and learning, ad hoc group collaboration, support for portfolios and research collaboration.--- * Plone – A ready-to-run content management system, that provides you with a system for managing web content that is ideal for project groups, communities, web sites, extranets and intranets.--- * Wikis – A way to easily create, edit, and link pages together, to create collaborative websites.
Resumo:
Registration fees for this workshop are being met by ARCS. There is no cost to attend; however space is limited.----- The Australian Research Collaboration Service (ARCS) has been supporting a wide range of Collaboration Services and Tools which have been allowing researchers, groups and research communities to share ideas and collaborate across organisational boundaries.----- This workshop will give an introduction into a number of web based and real-time collaboration tools and services which researchers may find useful for day-to-day collaboration with members of a research team located within an institution or across institutions. Attendees will be shown how a number of these tools work with strong emphasis placed on how these tools can help facilitate communication and collaboration. Attendees will have the opportunity to try out a number of examples themselves, and interact with the workshop staff to discuss how their own use cases could benefit from the tools and services which can be provided.----- Outline: A hands on introduction will be given to a number of services which ARCS is now operating and/or supporting such as:--- * EVO – A video conferencing environment, which is particularly suited to desktop or low bandwidth applications.--- * AccessGrid – An open source video conferencing and collaboration tool kit, which is great for room to room meetings.--- * Sakai – An online collaboration and learning environment, support teaching and learning, ad hoc group collaboration, support for portfolios and research collaboration.--- * Plone and Drupal – A ready-to-run content management system, that provides you with a system for managing web content that is ideal for project groups, communities, web sites, extranets and intranets.--- * Wikis – A way to easily create, edit, and link pages together, to create collaborative websites.
Resumo:
Petri nets are often used to model and analyze workflows. Many workflow languages have been mapped onto Petri nets in order to provide formal semantics or to verify correctness properties. Typically, the so-called Workflow nets are used to model and analyze workflows and variants of the classical soundness property are used as a correctness notion. Since many workflow languages have cancelation features, a mapping to workflow nets is not always possible. Therefore, it is interesting to consider workflow nets with reset arcs. Unfortunately, soundness is undecidable for workflow nets with reset arcs. In this paper, we provide a proof and insights into the theoretical limits of workflow verification.
Resumo:
Describes a simple triggered vacuum gap developed for initiating electric arcs in vacuum which uses the property that the voltage required to breakdown a gap in vacuum in the presence of a solid insulating material is considerably less than the voltage required in the absence of such material. In this triggered vacuum gap a solid insulating material is used in the angular space between the main cathode and the concentric trigger electrode forming the auxiliary gap. Different materials like epoxy resin, Teflon (PTFE) and mica have been used. The trigger voltage was found to vary in the range 560-1840 V. The results with epoxy and Teflon were unsatisfactory because the trigger voltages showed wide scatter and the auxiliary gap was soon bridged by metal particles eroded from the electrodes. Though the trigger voltages required with mica were relatively high, consistent triggering could be obtained for a large number of trials before the auxiliary gap was bridged. This was probably due to better thermal stability of mica as compared with either epoxy or Teflon.
Resumo:
Simple ARC designs for germanium (Ge) optics useful in spaceborne electro-optical systems have been generated. It is seen that the designs which are non-quarterwave in nature are efficient in terms of spectral coverage and residual reflection loss. They have been realised experimentally and the resulting ARCs are found to have very good spectral and durability properties.
Resumo:
A better understanding of vacuum arcs is desirable in many of today's 'big science' projects including linear colliders, fusion devices, and satellite systems. For the Compact Linear Collider (CLIC) design, radio-frequency (RF) breakdowns occurring in accelerating cavities influence efficiency optimisation and cost reduction issues. Studying vacuum arcs both theoretically as well as experimentally under well-defined and reproducible direct-current (DC) conditions is the first step towards exploring RF breakdowns. In this thesis, we have studied Cu DC vacuum arcs with a combination of experiments, a particle-in-cell (PIC) model of the arc plasma, and molecular dynamics (MD) simulations of the subsequent surface damaging mechanism. We have also developed the 2D Arc-PIC code and the physics model incorporated in it, especially for the purpose of modelling the plasma initiation in vacuum arcs. Assuming the presence of a field emitter at the cathode initially, we have identified the conditions for plasma formation and have studied the transitions from field emission stage to a fully developed arc. The 'footing' of the plasma is the cathode spot that supplies the arc continuously with particles; the high-density core of the plasma is located above this cathode spot. Our results have shown that once an arc plasma is initiated, and as long as energy is available, the arc is self-maintaining due to the plasma sheath that ensures enhanced field emission and sputtering. The plasma model can already give an estimate on how the time-to-breakdown changes with the neutral evaporation rate, which is yet to be determined by atomistic simulations. Due to the non-linearity of the problem, we have also performed a code-to-code comparison. The reproducibility of plasma behaviour and time-to-breakdown with independent codes increased confidence in the results presented here. Our MD simulations identified high-flux, high-energy ion bombardment as a possible mechanism forming the early-stage surface damage in vacuum arcs. In this mechanism, sputtering occurs mostly in clusters, as a consequence of overlapping heat spikes. Different-sized experimental and simulated craters were found to be self-similar with a crater depth-to-width ratio of about 0.23 (sim) - 0.26 (exp). Experiments, which we carried out to investigate the energy dependence of DC breakdown properties, point at an intrinsic connection between DC and RF scaling laws and suggest the possibility of accumulative effects influencing the field enhancement factor.
Resumo:
A transverse magnetic field was used to fix the cathode spot of a low pressure mercury arc with liquid cathode It was noticed that such fixation causes consider-abledepression of the emission zone below the mercury level.This depression varies with the arc current and the magnetic field and is associated with an increase in the arc voltage drop. It indicates appreciable pressure in the emission zone.
Resumo:
The re-ignition characteristics (variation of re-ignition voltage with time after current zero) of short alternating current arcs between plane brass electrodes in air were studied by observing the average re-ignition voltages on the screen of a cathode-ray oscilloscope and controlling the rates of rise of voltage by varying the shunting capacitance and hence the natural period of oscillation of the reactors used to limit the current. The shape of these characteristics and the effects on them of varying the electrode separation, air pressure, and current strength were determined.
The results show that short arc spaces recover dielectric strength in two distinct stages. The first stage agrees in shape and magnitude with a previously developed theory that all voltage is concentrated across a partially deionized space charge layer which increases its breakdown voltage with diminishing density of ionization in the field-tree space. The second stage appears to follow complete deionization by the electric field due to displacement of the field-free region by the space charge layer, its magnitude and shape appearing to be due simply to increase in gas density due to cooling. Temperatures calculated from this second stage and ion densities determined from the first stage by means of the space charge equation and an extrapolation of the temperature curve are consistent with recent measurements of arc value by other methods. Analysis or the decrease with time of the apparent ion density shows that diffusion alone is adequate to explain the results and that volume recombination is not. The effects on the characteristics of variations in the parameters investigated are found to be in accord with previous results and with the theory if deionization mainly by diffusion be assumed.
Resumo:
During the synthesis of fullerenes by dc plasma arcs, it has been found that the anodic graphite rod consistently burns up, while the cathodic graphite rod grows slag at its end. Further investigations revealed that the anodic and cathodic graphite rods p
Resumo:
随着工业机器人及其应用的不断发展,要求一个强有力的计算机系统来控制它的工作,并具有灵活、方便的机器人编程语言.本文系统地介绍了我们自行设计并实现的一个先进的机器人控制系统——ARCS.该系统主要包括两部分:(1)一个实时多任务的机器人控制软件SVAL系统,该系统支持一种通用性较强的机器人编程语言——SVAL语言.(2)一个支持该软件系统工作的、具有开放式结构的硬件环境.ARCS系统具有良好的实时性、可扩展性及基于外部传感器信号进行控制的能力.由于该系统的开放式结构.使其根据不同要求可方便地增删其功能,并可控制不同类型的机器人.我们已成功地实现对PUMA760机器人的控制,并在其上引入了力觉与接近觉的传感器,采样时间可缩短到16ms.一年多的运行结果证明,该系统稳定可靠,性能良好,现在正向产品转化.