984 resultados para Amine, Sam


Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A synthetic strategy for fabricating a dense amine functionalized self-assembled monolayer (SAM) on hydroxylated surfaces is presented. The assembly steps are monitored by X-ray photoelectron spectroscopy, Fourier transform infrared- attenuated total reflection, atomic force microscopy, variable angle spectroscopic ellipsometry, UV-vis surface spectroscopy, contact angle wettability, and contact potential difference measurements. The method applies alkylbromide-trichlorosilane for the fabrication of the SAM followed by surface transformation of the bromine moiety to amine by a two-step procedure: S(N)2 reaction that introduces the hidden amine, phthalimide, followed by the removal of the protecting group and exposing the free amine. The use of phthalimide moiety in the process enabled monitoring the substitution reaction rate on the surface (by absorption spectroscopy) and showed first-order kinetics. The simplicity of the process, nonharsh reagents, and short reaction time allow the use of such SAMs in molecular nanoelectronics applications, where complete control of the used SAM is needed. The different molecular dipole of each step of the process, which is verified by DFT calculations, supports the use of these SAMs as means to tune the electronic properties of semiconductors and for better synergism between SAMs and standard microelectronics processes and devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary aminoporphyrin, secondary bis(porphyrinyl)amine and hydroxyporphyrin complexes have been isolated and characterised both spectroscopically and crystallographically from the reaction of 5-bromo-10,15,20-triphenylporphyrinato-nickel(II) with hydrazine under palladium catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ethylenediamine-assisted route has been designed for one-step synthesis of lithium niobate particles with a novel rodlike structure in an aqueous solution system. The morphological evolution for these lithium niobate rods was monitored via SEM: The raw materials form large lozenges first. These lozenges are a metastable intermediate of this reaction, and they subsequently crack into small rods after sufficiently long time. These small rods recrystallize and finally grow into individual lithium niobate rods. Interestingly, shape-controlled fabrication of lithium niobate powders was achieved through using different amine ligands. For instance, the ethylenediamine or ethanolamine ligan can induce the formation of rods, while n-butylamine prefers to construct hollow spheres. These as-obtained lithium niobate rods and hollow spheres may exhibit enhanced performance in an optical application field due to their distinctive structures. This effective ligand-tuned-morphology route can provide a new strategy to facilely achieve the shape-controlled synthesis of other niobates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the monomeric title complex, [Co(C6H8O4)(C10H9N3)(H2O)2]·3H2O, the distorted octahedral CoN2O4 coordination environment comprises two N-atom donors from the bidentate dipyridyldiamine ligand, two O-atom donors from one of the carboxylate groups of the bidentate chelating adipate ligand and two water molecules. In addition, there are three solvent water molecules which are involved in both intra- and inter-unit O-HO hydrogen-bonding interactions, which together with an amine-water N-HO hydrogen bond produce a three-dimensional framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of the anhydrous products from the interaction of 2-amino-5-(4-bromophenyl)-1,3,4-thiadiazole with (2-naphthoxy)acetic acid, the 1:1 adduct C8H6BrN3S . C12H10O3 (I) and 3,5-dinitrobenzoic acid, the salt C8H7BrN3S+ C7H3N2O6- (II) have been determined. In the adduct (I), a heterodimer is formed through a cyclic hydrogen-bonding motif [graph set R2/2(8)], involving carboxylic acid O-H...N(hetero)and amine N-H...O(carboxyl) interactions. The heterodimers are essentially planar with a thiadiazole to naphthyl ring dihedral angle of 15.9(2)deg. and the intramolecular thiadiazole to phenyl ring angle of 4.7(2)deg. An amine N-H...N(hetero) hydrogen bond between the heterodimers generates a one-dimensional chain structure extending down [001]. Also present are weak benzene-benzene and naphthalene-naphthalene pi-pi stacking interactions down the b axis [minimum ring centroid separation, 3.936(3) Ang.]. With the salt (II), the cation-anion association is also through a cyclic R2/2(8) motif but involving duplex N-H...O(carboxyl) hydrogen bonds, giving a heterodimer which is close to planar [dihedral angles between the thiadiazole ring and the two benzene rings, 5.00(16)deg. (intra) and 7.23(15)deg. (inter)]. A secondary centrosymmetric cyclic N-H...O(carboxyl) hydrogen-bonding association involving the second amino H-atom generates a heterotetramer. Also present in the crystal are weak pi-pi i-\p interactions between thiadiazolium rings [minimum ring centroid separation, 3.936(3)Ang.], as well as a short Br...O(nitro) interaction [3.314(4)Ang.]. The two structures reported here now provide a total of three crystallographically characterized examples of co-crystalline products from the interaction of 2-amino-5-(4-bromophenyl)-1,3,4-thiadiazole with carboxylic acids, of which only one involves proton-transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in the molecular structure of polymer antioxidants such as hindered amine light stabilisers (HALS) is central to their efficacy in retarding polymer degradation and therefore requires careful monitoring during their in-service lifetime. The HALS, bis-(1-octyloxy-2,2,6,6-tetramethyl-4-piperidinyl) sebacate (TIN123) and bis-(1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate (TIN292), were formulated in different polymer systems and then exposed to various curing and ageing treatments to simulate in-service use. Samples of these coatings were then analysed directly using liquid extraction surface analysis (LESA) coupled with a triple quadrupole mass spectrometer. Analysis of TIN123 formulated in a cross-linked polyester revealed that the polymer matrix protected TIN123 from undergoing extensive thermal degradation that would normally occur at 292 degrees C, specifically, changes at the 1- and 4-positions of the piperidine groups. The effect of thermal versus photo-oxidative degradation was also compared for TIN292 formulated in polyacrylate films by monitoring the in situ conversion of N-CH3 substituted piperidines to N-H. The analysis confirmed that UV light was required for the conversion of N-CH3 moieties to N-H - a major pathway in the antioxidant protection of polymers - whereas this conversion was not observed with thermal degradation. The use of tandem mass spectrometric techniques, including precursor-ion scanning, is shown to be highly sensitive and specific for detecting molecular-level changes in HALS compounds and, when coupled with LESA, able to monitor these changes in situ with speed and reproducibility. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of hindered amine light stabilizers (HALS) to retard thermo- and photo-degradation of polymers has become increasingly common. Proposed mechanisms of polymer stabilisation involve significant changes to the HALS chemical structure; however, reports of the characterisation of these modified chemical species are limited. To better understand the fate of HALS and determine their in situ modifications, desorption electrospray ionisation mass spectrometry (DESI-MS) was employed to characterise ten commercially available HALS present in polyester-based coil coatings. TINUVIN® 770, 292, 144, 123, 152, and NOR371; HOSTAVIN® 3052, 3055, 3050, and 3058 were separately formulated with a pigmented, thermosetting polyester resin, cured on metal at 262 C and analysed directly by DESI-MS. High-level ab initio molecular orbital theory calculations were also undertaken to aid the mechanistic interpretation of the results. For HALS containing N-substituted piperidines (i.e., N-CH3, N-C(O)CH3, and N-OR) a secondary piperidine (N-H) analogue was detected in all cases. The formation of these intermediates can be explained either through hydrogen abstraction based mechanisms or direct N-OR homolysis with the former dominant under normal service temperatures (ca. 25-80 C), and the latter potentially becoming competitive under the high temperatures associated with curing (ca. 230-260 C). © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two native copper-containing amine oxidases (EC 1.4.3.21) have been isolated from Rhodococcus opacus and reveal phenotypic plasticity and catalytic activity with respect to structurally diverse natural and synthetic amines. Altering the amine growth substrate has enabled tailored and targeted oxidase upreg-ulation, which with subsequent treatment by precipitation, ion exchange and gel filtration, achieved a 90–150 fold purification. MALDI-TOF mass spectrometric and genomic analysis has indicated multiple gene activation with complex biodegradation pathways and regulatory mechanisms. Additional post-purification characterisation has drawn on the use of carbonyl reagent and chelating agent inhibitors. Michaelis–Menten kinetics for common aliphatic and aromatic amine substrates and several structural analogues demonstrated a broad specificity and high affinity with Michaelis constants (K M) ranging from 0.1 to 0.9 mM for C 1 –C 5 aliphatic mono-amines and <0.2 mM for a range of aromatic amines. Potential exploitation of the enzymatic versatility of the two isolated oxidases in biosensing and bioprocessing is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While applications of amine oxidases are increasing, few have been characterised and our understanding of their biological role and strategies for bacteria exploitation are limited. By altering the nitrogen source (NH4Cl, putrescine and cadaverine (diamines) and butylamine (monoamine)) and concentration, we have identified a constitutive flavin dependent oxidase (EC 1.4.3.10) within Rhodococcus opacus. The activity of this oxidase can be increased by over two orders of magnitude in the presence of aliphatic diamines. In addition, the expression of a copper dependent diamine oxidase (EC 1.4.3.22) was observed at diamine concentrations>1mM or when cells were grown with butylamine, which acts to inhibit the flavin oxidase. A Michaelis-Menten kinetic treatment of the flavin oxidase delivered a Michaelis constant (KM)=190μM and maximum rate (kcat)=21.8s(-1) for the oxidative deamination of putrescine with a lower KM (=60μM) and comparable kcat (=18.2s(-1)) for the copper oxidase. MALDI-TOF and genomic analyses have indicated a metabolic clustering of functionally related genes. From a consideration of amine oxidase specificity and sequence homology, we propose a putrescine degradation pathway within Rhodococcus that utilises oxidases in tandem with subsequent dehydrogenase and transaminase enzymes. The implications of PUT homeostasis through the action of the two oxidases are discussed with respect to stressors, evolution and application in microbe-assisted phytoremediation or bio-augmentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detection and characterisation of structural modifications of a hindered amine light stabiliser (HALS) directly from a polyester-based coil coating have been achieved by desorption electrospray ionisation mass spectrometry (DESI-MS) for the first time. In situ detection is made possible by exposing the coating to an acetone vapour atmosphere prior to analysis. This is a gentle and non-destructive treatment that allows diffusion of analyte to the surface without promoting lateral migration. Using this approach a major structural modification of the HALS TINUVIN®123 (bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate) was discovered where one N-ether piperidine moiety (N-OC8H17) is converted to a secondary piperidine (N–H). With the use of 2-dimensional DESI-MS imaging the modification was observed to arise during high curing temperatures (ca. 260 °C) and under simulated physiological conditions (80 °C, full solar spectrum). It is proposed that the secondary piperidine derivative is a result of a highly reactive aminyl radical intermediate produced by N–O homolytic bond cleavage. The nature of the bond cleavage is also suggested by ESR spin-trapping experiments employing α-phenyl-N-tert-butyl nitrone (PBN) in toluene at 80 °C. The presence of a secondary piperidine derivative in situ and the implication of N–OR competing with NO–R bond cleavage suggest an alternative pathway for generation of the nitroxyl radical—an essential requirement in anti-oxidant activity that has not previously been described for the N-ether sub-class of HALS.