924 resultados para Adaptive Control Design


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimal stochastic controller pushes the closed-loop behavior as close as possible to the desired one. The fully probabilistic design (FPD) uses probabilistic description of the desired closed loop and minimizes Kullback-Leibler divergence of the closed-loop description to the desired one. Practical exploitation of the fully probabilistic design control theory continues to be hindered by the computational complexities involved in numerically solving the associated stochastic dynamic programming problem. In particular very hard multivariate integration and an approximate interpolation of the involved multivariate functions. This paper proposes a new fully probabilistic contro algorithm that uses the adaptive critic methods to circumvent the need for explicitly evaluating the optimal value function, thereby dramatically reducing computational requirements. This is a main contribution of this short paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel adaptive control scheme. with improved convergence rate, for the equalization of harmonic disturbances such as engine noise. First, modifications for improving convergence speed of the standard filtered-X LMS control are described. Equalization capabilities are then implemented, allowing the independent tuning of harmonics. Eventually, by providing the desired order vs. engine speed profiles, the pursued sound quality attributes can be achieved. The proposed control scheme is first demonstrated with a simple secondary path model and, then, experimentally validated with the aid of a vehicle mockup which is excited with engine noise. The engine excitation is provided by a real-time sound quality equivalent engine simulator. Stationary and transient engine excitations are used to assess the control performance. The results reveal that the proposed controller is capable of large order-level reductions (up to 30 dB) for stationary excitation, which allows a comfortable margin for equalization. The same holds for slow run-ups ( > 15s) thanks to the improved convergence rate. This margin, however, gets narrower with shorter run-ups (<= 10s). (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptive control systems are one of the most significant research directions of modern control theory. It is well known that every mechanical appliance’s behavior noticeably depends on environmental changes, functioning-mode parameter changes and changes in technical characteristics of internal functional devices. An adaptive controller involved in control process allows reducing an influence of such changes. In spite of this such type of control methods is applied seldom due to specifics of a controller designing. The work presented in this paper shows the design process of the adaptive controller built by Lyapunov’s function method for the Hydraulic Drive. The calculation needed and the modeling were conducting with MATLAB® software including Simulink® and Symbolic Math Toolbox™ etc. In the work there was applied the Jacobi matrix linearization of the object’s mathematical model and derivation of the suitable reference models based on Newton’s characteristic polynomial. The intelligent adaptive to nonlinearities algorithm for solving Lyapunov’s equation was developed. Developed algorithm works properly but considered plant is not met requirement of functioning with. The results showed confirmation that adaptive systems application significantly increases possibilities in use devices and might be used for correction a system’s behavior dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple parameter adaptive controller design methodology is introduced in which steady-state servo tracking properties provide the major control objective. This is achieved without cancellation of process zeros and hence the underlying design can be applied to non-minimum phase systems. As with other self-tuning algorithms, the design (user specified) polynomials of the proposed algorithm define the performance capabilities of the resulting controller. However, with the appropriate definition of these polynomials, the synthesis technique can be shown to admit different adaptive control strategies, e.g. self-tuning PID and self-tuning pole-placement controllers. The algorithm can therefore be thought of as an embodiment of other self-tuning design techniques. The performances of some of the resulting controllers are illustrated using simulation examples and the on-line application to an experimental apparatus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have shown that adaptive X control charts are quicker than traditional X charts in detecting small to moderate shifts in a process. In this article, we propose a joint statistical design of adaptive X and R charts having all design parameters varying adaptively. The process is subjected to two independent assignable causes. One cause changes the process mean and the other changes the process variance. However, the occurrence of one kind of assignable cause does not preclude the occurrence of the other. It is assumed that the quality characteristic is normally distributed and the time that the process remains in control has exponential distribution. Performance measures of these adaptive control charts are obtained through a Markov chain approach. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a general model for adaptive c, np, u and p control charts in which one, two or three design parameters (sample size, sampling interval and control limit width) switch between two values, according to the most recent process information. For a given in-control average sampling rate and a given false alarm rate, the adaptive chart detects changes in the process much faster than a chart with fixed parameters. Moreover, this study also offers general guidance on how to choose an effective design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is to design a path following control system for a car-like mobile robot using classical linear control techniques, so that it adapts on-line to varying conditions during the trajectory following task. The main advantages of the proposed control structure is that well known linear control theory can be applied in calculating the PID controllers to full control requirements, while at the same time it is exible to be applied in non-linear changing conditions of the path following task. For this purpose the Frenet frame kinematic model of the robot is linearised at a varying working point that is calculated as a function of the actual velocity, the path curvature and kinematic parameters of the robot, yielding a transfer function that varies during the trajectory. The proposed controller is formed by a combination of an adaptive PID and a feed-forward controller, which varies accordingly with the working conditions and compensates the non-linearity of the system. The good features and exibility of the proposed control structure have been demonstrated through realistic simulations that include both kinematics and dynamics of the car-like robot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main theme of research of this project concerns the study of neutral networks to control uncertain and non-linear control systems. This involves the control of continuous time, discrete time, hybrid and stochastic systems with input, state or output constraints by ensuring good performances. A great part of this project is devoted to the opening of frontiers between several mathematical and engineering approaches in order to tackle complex but very common non-linear control problems. The objectives are: 1. Design and develop procedures for neutral network enhanced self-tuning adaptive non-linear control systems; 2. To design, as a general procedure, neural network generalised minimum variance self-tuning controller for non-linear dynamic plants (Integration of neural network mapping with generalised minimum variance self-tuning controller strategies); 3. To develop a software package to evaluate control system performances using Matlab, Simulink and Neural Network toolbox. An adaptive control algorithm utilising a recurrent network as a model of a partial unknown non-linear plant with unmeasurable state is proposed. Appropriately, it appears that structured recurrent neural networks can provide conveniently parameterised dynamic models for many non-linear systems for use in adaptive control. Properties of static neural networks, which enabled successful design of stable adaptive control in the state feedback case, are also identified. A survey of the existing results is presented which puts them in a systematic framework showing their relation to classical self-tuning adaptive control application of neural control to a SISO/MIMO control. Simulation results demonstrate that the self-tuning design methods may be practically applicable to a reasonably large class of unknown linear and non-linear dynamic control systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep hole drilling is one of the most complicated metal cutting processes and one of the most difficult to perform on CNC machine-tools or machining centres under conditions of limited manpower or unmanned operation. This research work investigates aspects of the deep hole drilling process with small diameter twist drills and presents a prototype system for real time process monitoring and adaptive control; two main research objectives are fulfilled in particular : First objective is the experimental investigation of the mechanics of the deep hole drilling process, using twist drills without internal coolant supply, in the range of diarneters Ø 2.4 to Ø4.5 mm and working length up to 40 diameters. The definition of the problems associated with the low strength of these tools and the study of mechanisms of catastrophic failure which manifest themselves well before and along with the classic mechanism of tool wear. The relationships between drilling thrust and torque with the depth of penetration and the various machining conditions are also investigated and the experimental evidence suggests that the process is inherently unstable at depths beyond a few diameters. Second objective is the design and implementation of a system for intelligent CNC deep hole drilling, the main task of which is to ensure integrity of the process and the safety of the tool and the workpiece. This task is achieved by means of interfacing the CNC system of the machine tool to an external computer which performs the following functions: On-line monitoring of the drilling thrust and torque, adaptive control of feed rate, spindle speed and tool penetration (Z-axis), indirect monitoring of tool wear by pattern recognition of variations of the drilling thrust with cumulative cutting time and drilled depth, operation as a data base for tools and workpieces and finally issuing of alarms and diagnostic messages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis introduces the L1 Adaptive Control Toolbox, a set of tools implemented in Matlab that aid in the design process of an L1 adaptive controller and enable the user to construct simulations of the closed-loop system to verify its performance. Following a brief review of the existing theory on L1 adaptive controllers, the interface of the toolbox is presented, including a description of the functions accessible to the user. Two novel algorithms for determining the required sampling period of a piecewise constant adaptive law are presented and their implementation in the toolbox is discussed. The detailed description of the structure of the toolbox is provided as well as a discussion of the implementation of the creation of simulations. Finally, the graphical user interface is presented and described in detail, including the graphical design tools provided for the development of the filter C(s). The thesis closes with suggestions for further improvement of the toolbox.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International audience

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis deals with robust adaptive control and its applications, and it is divided into three main parts. The first part is about the design of robust estimation algorithms based on recursive least squares. First, we present an estimator for the frequencies of biased multi-harmonic signals, and then an algorithm for distributed estimation of an unknown parameter over a network of adaptive agents. In the second part of this thesis, we consider a cooperative control problem over uncertain networks of linear systems and Kuramoto systems, in which the agents have to track the reference generated by a leader exosystem. Since the reference signal is not available to each network node, novel distributed observers are designed so as to reconstruct the reference signal locally for each agent, and therefore decentralizing the problem. In the third and final part of this thesis, we consider robust estimation tasks for mobile robotics applications. In particular, we first consider the problem of slip estimation for agricultural tracked vehicles. Then, we consider a search and rescue application in which we need to drive an unmanned aerial vehicle as close as possible to the unknown (and to be estimated) position of a victim, who is buried under the snow after an avalanche event. In this thesis, robustness is intended as an input-to-state stability property of the proposed identifiers (sometimes referred to as adaptive laws), with respect to additive disturbances, and relative to a steady-state trajectory that is associated with a correct estimation of the unknown parameter to be found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents both the theoretical and the experimental approaches of the development of a mathematical model to be used in multi-variable control system designs of an active suspension for a sport utility vehicle (SUV), in this case a light pickup truck. A complete seven-degree-of-freedom model is successfully quickly identified, with very satisfactory results in simulations and in real experiments conducted with the pickup truth. The novelty of the proposed methodology is the use of commercial software in the early stages of the identification to speed up the process and to minimize the need for a large number of costly experiments. The paper also presents major contributions to the identification of uncertainties in vehicle suspension models and in the development of identification methods using the sequential quadratic programming, where an innovation regarding the calculation of the objective function is proposed and implemented. Results from simulations of and practical experiments with the real SUV are presented, analysed, and compared, showing the potential of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a new v-metric based approach is proposed to design decentralized controllers for multi-unit nonlinear plants that admit a set of plant decompositions in an operating space. Similar to the gap metric approach in literature, it is shown that the operating space can also be divided into several subregions based on a v-metric indicator, and each of the subregions admits the same controller structure. A comparative case study is presented to display the advantages of proposed approach over the gap metric approach. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article addresses the problem of obtaining reduced complexity models of multi-reach water delivery canals that are suitable for robust and linear parameter varying (LPV) control design. In the first stage, by applying a method known from the literature, a finite dimensional rational transfer function of a priori defined order is obtained for each canal reach by linearizing the Saint-Venant equations. Then, by using block diagrams algebra, these different models are combined with linearized gate models in order to obtain the overall canal model. In what concerns the control design objectives, this approach has the advantages of providing a model with prescribed order and to quantify the high frequency uncertainty due to model approximation. A case study with a 3-reach canal is presented, and the resulting model is compared with experimental data. © 2014 IEEE.