916 resultados para Adaptability and stability
Resumo:
This study aimed to evaluate the average behavior, the genotype x environment (GxE), adaptability and stability of seven soybean cultivars at three sowing dates in Uberlandia-MG. The tests were conducted at Capim Branco Farm, belonging to the Federal University of Uberlandia. Sowing was held on october 29 (1st season), november 24 (2nd season) and december 17 (3rd season) 2007. The experimental design was a randomized, seven genotypes (UFUS Xavante, UFUS Riqueza, UFUS Guarani, UFUS Milionaria, Msoy 8001, Msoy 8411 and Msoy 8914) with three replications in each of three sowing dates. Means were compared by Tukey test at 5% probability. Analysis of adaptability and phenotypic stability of genotypes was performed using the Eberhart and Russell (1966), Lin and Binns (1988) modified by Carneiro (1998) and centroid (NASCIMENTO et al., 2009). For grain yield, the cultivar UFUS Xavante was classified as specific adaptability to environment and high stability. The other cultivars were classified as being of general adaptability. For oil content, the cultivars Msoy 8914 and UFUS Xavante behaved as high stability and was classified as having high adaptability. For the character content of protein, all cultivars behaved as wide adaptability and low stability.
Resumo:
The GxE interaction only became widely discussed from evolutionary studies and evaluations of the causes of behavioral changes of species cultivated in environments. In the last 60 years, several methodologies for the study of adaptability and stability of genotypes in multiple environments trials were developed in order to assist the breeder's choice regarding which genotypes are more stable and which are the most suitable for the crops in the most diverse environments. The methods that use linear regression analysis were the first to be used in a general way by breeders, followed by multivariate analysis methods and mixed models. The need to identify the genetic and environmental causes that are behind the GxE interaction led to the development of new models that include the use of covariates and which can also include both multivariate methods and mixed modeling. However, further studies are needed to identify the causes of GxE interaction as well as for the more accurate measurement of its effects on phenotypic expression of varieties in competition trials carried out in genetic breeding programs.
Resumo:
The objective of this work was to characterize the chemical properties of white oat (Avena sativa) caryopsis and to determine the adaptability and stability of cultivars recommended for cultivation in the state of Rio Grande do Sul, Brazil. The trials were carried out in the 2007, 2008 and 2009 crop seasons, in three municipalities: Augusto Pestana, Capão do Leão, and Passo Fundo. Fifteen cultivars were evaluated in a randomized block design, with four replicates. The contents of protein, lipid, and nitrogen-free extract were evaluated in the caryopsis. Cultivar performances for the measured characters varied according to location and year of cultivation. The cultivar URS Guapa showed high content of nitrogen-free extract and low contents of protein and lipid in the caryopsis. 'FAPA Louise' showed high content of lipid, whereas 'Albasul', 'UPF 15', and 'UPF 18' showed high content of protein and low content of nitrogen-free extract. There is no evidence of an ideal biotype for the evaluated characters, which could simultaneously show high average performance, adaptability to favorable and unfavorable environments, and stability.
Resumo:
The objective of this work was to estimate the repeatability of adaptability and stability parameters of common bean between years, within each biennium from 2003 to 2012, in Minas Gerais state, Brazil. Grain yield data from trials of value for cultivation and use common bean were analyzed. Grain yield, ecovalence, regression coefficient, and coefficient of determination were estimated considering location and sowing season per year, within each biennium. Subsequently, a analysis of variance these estimates was carried out, and repeatability was estimated in the biennia. Repeatability estimate for grain yield in most of the biennia was relatively high, but for ecovalence and regression coefficient it was null or of small magnitude, which indicates that confidence on identification of common bean lines for recommendation is greater when using means of yield, instead of stability parameters.
Resumo:
The objective of this work was to estimate genetic parameters and to evaluate simultaneous selection for root yield and for adaptability and stability of cassava genotypes. The effects of genotypes were assumed as fixed and random, and the mixed model methodology (REML/Blup) was used to estimate genetic parameters and the harmonic mean of the relative performance of genotypic values (HMRPGV), for simultaneous selection purposes. Ten genotypes were analyzed in a complete randomized block design, with four replicates. The experiment was carried out in the municipalities of Altamira, Santarém, and Santa Luzia do Pará in the state of Pará, Brazil, in the growing seasons of 2009/2010, 2010/2011, and 2011/2012. Roots were harvested 12 months after planting, in all tested locations. Root yield had low coefficients of genotypic variation (4.25%) and broad-sense heritability of individual plots (0.0424), which resulted in low genetic gain. Due to the low genotypic correlation (0.15), genotype classification as to root yield varied according to the environment. Genotypes CPATU 060, CPATU 229, and CPATU 404 stood out as to their yield, adaptability, and stability.
Resumo:
O objetivo deste trabalho foi estimar parâmetros genéticos e avaliar a seleção simultânea quanto à produtividade de raízes e à adaptabilidade e estabilidade de genótipos de mandioca. Os efeitos dos genótipos foram considerados como fixos e aleatórios, e a metodologia de modelos mistos (REML/Blup) foi utilizada para estimar os parâmetros genéticos e a média harmônica do desempenho relativo dos valores genotípicos (MHPRVG), para seleção simultânea. Dez genótipos foram avaliados em delineamento de blocos ao acaso, com quatro repetições. O experimento foi realizado nos municípios de Altamira, Santarém e Santa Luzia do Pará, PA, nos anos agrícolas de 2009/2010, 2010/2011 e 2011/2012. As raízes foram colhidas 12 meses após o plantio, em todos os locais testados. A produtividade de raízes apresentou baixo coeficiente de variação genotípica (4,25%) e herdabilidade de parcelas individuais no sentido amplo (0,0424), o que resultou em baixo ganho genético. Em razão da baixa correlação genotípica (0,15), a classificação dos genótipos quanto à produtividade de raízes variou de acordo com o ambiente. Os genótipos CPATU 060, CPATU 229 e CPATU 404 destacaram-se quanto à produtividade, adaptabilidade e estabilidade.
Resumo:
This study aimed to select special grain bean lines with high productivity, adaptability and stability of production, evaluated in different environments of the Minas Gerais State, Brazil.
Resumo:
ABSTRACT. The aim of this study was to verify the adaptability and stability of soybean cultivars with regards to yield and oil content. Data of soybean yield and oil content were used from experiments set up in six environments in the 2011/12 and 2012/13 crop seasons in the municipalities of Patos de Minas, Uberaba, Lavras, and São Gotardo, Minas Gerais, Brazil, testing 36 commercial soybean cultivars of both conventional and transgenic varieties. The Wricke method and GGE biplot analysis were used to evaluate adaptability and stability of these cultivars. Large variations were observed in grain yield in relation to the different environments studied, showing that these materials are adaptable. The cultivars exhibited significant differences in oil content. The cultivars BRSGO204 (Goiânia) and BRSMG (Garantia) exhibited the greatest average grain yield in the different environments studied, and the cultivar BRSMG 760 SRR had the greatest oil content among the cultivars evaluated. Ecovalence was adopted to identify the most stable cultivars, and the estimates were nearly uniform both for grain yield and oil content, showing a variation of 0.07 and 0.01%, respectively. The GGE biplot was efficient at identifying cultivars with high adaptability and phenotype stability.
Resumo:
A nonlinear dynamic model of microbial growth is established based on the theories of the diffusion response of thermodynamics and the chemotactic response of biology. Except for the two traditional variables, i.e. the density of bacteria and the concentration of attractant, the pH value, a crucial influencing factor to the microbial growth, is also considered in this model. The pH effect on the microbial growth is taken as a Gaussian function G0e-(f- fc)2/G1, where G0, G1 and fc are constants, f represents the pH value and fc represents the critical pH value that best fits for microbial growth. To study the effects of the reproduction rate of the bacteria and the pH value on the stability of the system, three parameters a, G0 and G1 are studied in detail, where a denotes the reproduction rate of the bacteria, G0 denotes the impacting intensity of the pH value to microbial growth and G1 denotes the bacterial adaptability to the pH value. When the effect of the pH value of the solution which microorganisms live in is ignored in the governing equations of the model, the microbial system is more stable with larger a. When the effect of the bacterial chemotaxis is ignored, the microbial system is more stable with the larger G1 and more unstable with the larger G0 for f0 > fc. However, the stability of the microbial system is almost unaffected by the variation G0 and G1 and it is always stable for f0 < fc under the assumed conditions in this paper. In the whole system model, it is more unstable with larger G1 and more stable with larger G0 for f0 < fc. The system is more stable with larger G1 and more unstable with larger G0 for f0 > fc. However, the system is more unstable with larger a for f0 < fc and the stability of the system is almost unaffected by a for f0 > fc. The results obtained in this study provide a biophysical insight into the understanding of the growth and stability behavior of microorganisms.
Resumo:
Sunlight exposure causes several types of injury to humans, especially on the skin; among the most common harmful effects due to ultraviolet (UV) exposure are erythema, pigmentation and lesions in DNA, which may lead to cancer. These long-term effects are minimized with the use of sunscreens, a class of cosmetic products that contains UV filters as the main component in the formulation; such molecules can absorb, reflect or diffuse UV rays, and can be used alone or as a combination to broaden the protection on different wavelengths. Currently, worldwide regulatory agencies define which ingredients and what quantities must be used in each country, and enforce companies to conduct tests that confirm the Sun Protection Factor (SPF) and the UVA (Ultraviolet A) factor. Standard SPF determination tests are currently conducted in vivo, using human subjects. In an industrial mindset, apart from economic and ethical reasons, the introduction of an in vitro method emerges as an interesting alternative by reducing risks associated to UV exposure on tests, as well as providing assertive analytical results. The present work aims to describe a novel methodology for SPF determination directly from sunscreen formulations using the previously described cosmetomics platform and mass spectrometry as the analytical methods of choice.
Resumo:
The objective of this study was to evaluate the effect of genetic polymorphism of kappa-casein, breed and seasonality on the physicochemical characteristics, composition and stability of milk in commercial dairy herds. A total of 879 milk and blood samples were collected from 603 Holstein and 276 Girolando cows, obtained during rainy and dry seasons. Milk samples were analyzed to determine the physicochemical characteristics, composition and ethanol stability, while blood samples were subjected to polymerase chain reaction to identify the kappa-casein genotype. The frequencies of genotypes AA, AB and BB of k-casein were respectively, 66.83, 31.84 and 1.33% for Holstein, and 71.38, 27.90 and 0.72% for the Girolando cows, respectively. The A allele was more frequent than the B allele, both for Holstein (0.827 and 0.173) and Girolando cows (0.853 and 0.147), respectively. Cows of AB and BB genotypes showed a higher milk fat content compared to the AA genotype. There was an interaction between breed and seasonality on the concentration of milk urea with higher values for Holstein and Girolando cows in the rainy and dry season, respectively. The levels of lactose, total solids, crude protein, true protein, casein and the casein:true protein ratio were higher during the dry season, while during the rainy season, the somatic cell count and milk urea concentration were higher. There was no association between milk stability and k-casein genotypes, but Holstein cows showed higher milk stability than Girolando cows, and milk was more stable during the rainy season than during the dry season.
Resumo:
The development of Nb(3)Al and Nb(3)Sn superconductors is of great interest for the applied superconductivity area. These intermetallics composites are obtained normally by heat treatment reactions at high temperature. Processes that allow formation of the superconducting phases at lower temperatures (<1000 degrees C), particularly for Nb(3)Al, are of great interest. The present work studies phase formation and stability of Nb(3)Al and Nb(3)Sn superconducting phases using mechanical alloying (high energy ball milling). Our main objective was to form composites near stoichiometry, which could be transformed into the superconducting phases using low-temperature heat treatments. High purity Nb-Sn and Nb-Al powders were mixed to generate the required superconducting phases (Nb-25at.%Sn and Nb-25at.%Al) in an argon atmosphere glove-box. After milling in a Fritsch mill, the samples were compressed in a hydraulic uniaxial press and encapsulated in evacuated quartz tubes for heat treatment. The compressed and heat treated samples were characterized using X-ray diffractometry. Microstructure and chemical analysis were accomplished using scanning electron microscopy and energy dispersive spectrometry. Nb(3)Al XRD peaks were observed after the sintering at 800 degrees C for the sample milled for 30 h. Nb(3)Sn XRD peaks could be observed even before the heat treatment. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A stability-indicating high-performance liquid chromatographic (HPLC) and a second-order derivative spectrophotometric (UVDS) analytical methods were validated and compared for determination of simvastatin in tablets. The HPLC method was performed with isocratic elution using a C18 column and a mobile phase composed of methanol:acetonitrile:water (60:20:20, v/v/v) at a flow rate of 1.0 ml/min. The detection was made at 239 nm. In UVDS method, methanol and water were used in first dilution and distilled water was used in consecutive dilutions and as background. The second-order derivative signal measurement was taken at 255 nm. Analytical curves showed correlation coefficients > 0.999 for both methods. The quantitation limits (QL) were 2.41 mu g/ml for HPLC and 0.45 mu g/ml for UVDS, respectively. Intra and inter-day relative standard deviations were < 2.0 %. Statistical analysis with t- and F-tests are not exceeding their critical values demonstrating that there is no significant difference between the two methods at 95 % confidence level.
Resumo:
Background: The effectiveness of a water/oil (w/o) microemulsion containing quercetin against ultraviolet B radiation (UVB) induced damage was recently demonstrated by our group. However, during the development of new pharmaceutical products, the evaluation of percutaneous absorption and in vivo effectiveness should be accompanied by evaluation of stability parameters as an integral part of the process. Objective: The aim was to investigate the stability of the final microemulsion formulation considering the temperature ranges of storage and application. Methods: The physical, chemical, and functional stability of this formulation under different conditions of storage during 12 months and the photostability of quercetin incorporated into this system over UVB exposure for 7 days were evaluated. Results: Although the results indicated a notable physical stability of the w/o microemulsions during the experimental period under all employed conditions, in both, the chemical and functional studies, a significant loss of quercetin content and antioxidant activity was found after 6 months of storage at 30 degrees C/70% relative humidity and after 2 months at 40 degrees C/70% relative humidity. The photostability study results demonstrated that the incorporation of quercetin into the w/o microemulsion maintained the previously demonstrated photostability of this flavonoid under forced exposure to UVB irradiation. Conclusion: Thus, this work demonstrates that special storage conditions (at 4 +/- 2 degrees C) are necessary to maintain the functionality of the w/o microemulsion containing quercetin and mainly emphasizes the importance of studying physical, chemical, and functional parameters at the same time during stability evaluation of active principles.
Resumo:
A novel method of preparation of water-in-oil-in-micelle-containing water (W/O/W(m)) Multiple emulsions using the one-step emulsification method is reported. These multiple emulsions were normal (not temporary) and stable over a 60 day test period. Previously, reported multiple emulsion by the one-step method were abnormal systems that formed at the inversion point of simple emulsion (where there is an incompatibility in the Ostwald and Bancroft theories, and typically these are O/W/O systems). Pseudoternary phase diagrams and bidimensional process-composition (phase inversion) maps were constructed to assist in process and composition optimization. The surfactants used were PEG40 hydrogenated castor oil and sorbitan oleate, and mineral and vegetables oils were investigated. Physicochemical characterization studies showed experimentally, for the First time, the significance of the ultralow surface tension point oil multiple emulsion formation by one-step via phase inversion processes. Although the significance of ultralow surface tension has been speculated previously, to the best of our knowledge, this is the first experimental confirmation. The multiple emulsion system reported here was dependent not only upon the emulsification temperature, but also upon the component ratios, therefore both the emulsion phase inversion and the phase inversion temperature were considered to fully explain their formation. Accordingly, it is hypothesized that the formation of these normal multiple emulsions is not a result of a temporary incompatibility (at the inversion point) during simple emulsion preparation, as previously reported. Rather, these normal W/O/W(m) emulsions are a result of the simultaneous occurrence of catastrophic and transitional phase inversion processes. The formation of the primary emulsions (W/O) is in accordance with the Ostwald theory and the formation of the multiple emulsions (W/O/W(m)) is in agreement with the Bancroft theory.