970 resultados para ALPHA,BETA-UNSATURATED ALDEHYDES
Resumo:
The selective hydrogenation of ,-unsaturated aldehydes and ketones has been studied using ketoisophorone and cinnamaldehyde as model substrates using manganese oxide octahedral molecular sieve (OMS-2) based catalysts. For the first time, OMS-2 has been shown to be an efficient and selective hydrogenation catalyst. High selectivities for either the CC or CO double bond at approximate to 100% conversion were achieved by using OMS-2 and platinum supported on OMS-2 catalysts. Density functional theory (DFT) calculations showed that the dissociation of H2 on OMS-2 was water assisted and occurred on the surface Mn of OMS-2(001) that had been modified by an adsorbed H2O molecule. The theoretically calculated activation barrier was in good agreement with the experimentally determined value for the hydrogenation reactions, indicating that H2 dissociation on OMS-2 is likely to be the rate-determining step. A significant increase in the rate of reaction was observed in the presence of Pt as a result of the enhancement of H2 dissociative adsorption and subsequent reaction on the Pt or spillover of the hydrogen to the OMS-2 support. The relative adsorption strengths of ketoisophorone and cinnamaldehyde on the OMS-2 support compared with the Pt were found to determine the product selectivity.
Resumo:
Chromium(II) chloride converts alpha,beta-unsaturated aldehydes to the corresponding cyclopropanols.
Resumo:
A new method for the preparation of alpha,beta-unsaturated diazoketones from aldehydes and a Horner-Wadsworth- Emmons reagent is reported. The method was applied to the short synthesis of two substituted pyrrolidines.
Resumo:
An easy and convenient one-step procedure for the conversion of alpha,beta-unsaturated carbonyl compounds into their corresponding bromo-enones using NBS-Et3N center dot 3HBr in the presence of potassium carbonate in dichloromethane at 0 degrees C to room temperature under very mild conditions in high yields and significantly shorter times, is reported.
Resumo:
1,1,3-Trimethyl-2-thioxo-1,2-dihydronaphthale(1n)e adds to electron-rich olefins upon excitation to either Sz (PP*) or Sl (ns*) states. Excitation to S2 level resulted in the same mixture of products, namely thietane and 1,4-dithiane, as on excitation to S1 level. Addition occurs to the thiocarbonyl function and not to the carbon-carbon double bond. The addition is site-specific, and the formation of thietane is regiospecific. The ratio of thietane to 1,4-dithiane in the product mixture is dependent on the concentration of the thioenone. The addition is suggested to originate from the lowest triplet state (Tl) and involves diradical intermediates.
Resumo:
Electron-deficient olefins add to thioenone 1 upon m* excitation. Cycloaddition occurs to the thiocarbonyl chromophore preferentially from the less-hindered side to yield thietanes. Thietane formation is stereospecific and regioselective. This addition has been inferred to originate from the second excited singlet, S2(?rx*), state. The exciplex intermediacy has been inferred from the dependence of the fluorescence quenching rate constant on the electron-acceptor properties of the olefin. The observed site specificity and regioselectivity are rationalized on the basis of PMO theory. The observed photochemical behavior of thioenone is different from that of enones.
Resumo:
The first organocatalytic enantioselective direct vinylogous Michael reaction of alpha,beta-unsaturated gamma-butyrolactam to nitroolefins is developed using cinchona alkaloids as the catalysts. Both product enantiomers are accessible with moderate to good enantioselectivity.
Resumo:
Copper-catalyzed, ligand-promoted decarboxylative coupling of readily available a,fi-unsaturated acids with sodium aryl sulfinates is presented. This method provides a new avenue for the synthesis of vinyl sulfones via a decarboxylative radical coupling strategy by employing a catalytic amount of Cu(ClO4)(2)center dot 6H(2)O, TBHP in decane as an oxidant, and 1,10-phenanthroline as a ligand. The salient feature of this method is that it furnishes exclusively the (E)-isomer.
Resumo:
Hydrogenation of alpha,beta-unsaturated aldehydes (citral, 3-methyl-2-butenal, cinnamaldehyde) has been studied with tetrakis(triphenylphosphine) ruthenium dihydride (H2Ru(TPP)(4)) catalyst in a poly(ethylene glycol) (PEG)/ compressed carbon dioxide biphasic system. The hydrogenation reaction was slow under PEG/ H-2 biphasic conditions at H-2 4 MPa in the absence of CO2. When the reaction mixture was pressurized by a non-reactant of CO2, however, the reaction was significantly accelerated.
Resumo:
beta, beta-1, 3-Piopylenedithio-alpha, beta-unsaturated arylketones 2 via chemoselective 1,2-addition with allyl or benzyl Grignard reagents afforded the corresponding carbinols 3 and 4. Catalysed by silica gel, the carbinols 3 and 4 were converted to the beta,gamma-unsaturated arylketones 5, 6. The mechanism and reaction condition were discussed.