988 resultados para 3D in vitro model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During my PhD,I have been develop an innovative technique to reproduce in vitro the 3D thymic microenvironment, to be used for growth and differentiation of thymocytes, and possible transplantation replacement in conditions of depressed thymic immune regulation. The work has been developed in the laboratory of Tissue Engineering at the University Hospital in Basel, Switzerland, under the tutorship of Prof.Ivan Martin. Since a number of studies have suggested that the 3D structure of the thymic microenvironment might play a key role in regulating the survival and functional competence of thymocytes, I’ve focused my effort on the isolation and purification of the extracellular matrix of the mouse thymus. Specifically, based on the assumption that TEC can favour the differentiation of pre-T lymphocytes, I’ve developed a specific decellularization protocol to obtain the intact, DNA-free extracellular matrix of the adult mouse thymus. Two different protocols satisfied the main characteristics of a decellularized matrix, according to qualitative and quantitative assays. In particular, the quantity of DNA was less than 10% in absolute value, no positive staining for cells was found and the 3D structure and composition of the ECM were maintained. In addition, I was able to prove that the decellularized matrixes were not cytotoxic for the cells themselves, and were able to increase expression of MHC II antigens compared to control cells grown in standard conditions. I was able to prove that TECs grow and proliferate up to ten days on top the decellularized matrix. After a complete characterization of the culture system, these innovative natural scaffolds could be used to improve the standard culture conditions of TEC, to study in vitro the action of different factors on their differentiation genes, and to test the ability of TECs to induce in vitro maturation of seeded T lymphocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gliomas are one of the most frequent primary malignant brain tumors. Acquisition of stem-like features likely contributes to the malignant nature of high-grade gliomas and may be responsible for the initiation, growth, and recurrence of these tumors. In this regard, although the traditional 2D cell culture system has been widely used in cancer research, it shows limitations in maintaining the stemness properties of cancer and in mimicking the in vivo microenvironment. In order to overcome these limitations, different three-dimensional (3D) culture systems have been developed to mimic better the tumor microenvironment. Cancer cells cultured in 3D structures may represent a more reliable in vitro model due to increased cell-cell and cell-extracellular matrix (ECM) interaction. Several attempts to recreate brain cancer tissue in vitro are described in literature. However, to date, it is still unclear which main characteristics the ideal model should reproduce. The overall goal of this project was the development of a 3D in vitro model able to reproduce the brain ECM microenvironment and to recapitulate pathological condition for the study of tumor stroma interactions, tumor invasion ability, and molecular phenotype of glioma cells. We performed an in silico bioinformatic analysis using GEPIA2 Software to compare the expression level of seven matrix protein in the LGG tumors with healthy tissues. Then, we carried out a FFPE retrospective study in order to evaluate the percentage of expression of selected proteins. Thus, we developed a 3D scaffold composed by Hyaluronic Acid and Collagen IV in a ratio of 50:50. We used two astrocytoma cell lines, HTB-12 and HTB-13. In conclusion, we developed an in vitro 3D model able to reproduce the composition of brain tumor ECM, demonstrating that it is a feasible platform to investigate the interaction between tumor cells and the matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of human cell models that recapitulate hepatic functionality allows the study of metabolic pathways involved in toxicity and disease. The increased biological relevance, cost-effectiveness and high-throughput of cell models can contribute to increase the efficiency of drug development in the pharmaceutical industry. Recapitulation of liver functionality in vitro requires the development of advanced culture strategies to mimic in vivo complexity, such as 3D culture, co-cultures or biomaterials. However, complex 3D models are typically associated with poor robustness, limited scalability and compatibility with screening methods. In this work, several strategies were used to develop highly functional and reproducible spheroid-based in vitro models of human hepatocytes and HepaRG cells using stirred culture systems. In chapter 2, the isolation of human hepatocytes from resected liver tissue was implemented and a liver tissue perfusion method was optimized towards the improvement of hepatocyte isolation and aggregation efficiency, resulting in an isolation protocol compatible with 3D culture. In chapter 3, human hepatocytes were co-cultivated with mesenchymal stem cells (MSC) and the phenotype of both cell types was characterized, showing that MSC acquire a supportive stromal function and hepatocytes retain differentiated hepatic functions, stability of drug metabolism enzymes and higher viability in co-cultures. In chapter 4, a 3D alginate microencapsulation strategy for the differentiation of HepaRG cells was evaluated and compared with the standard 2D DMSO-dependent differentiation, yielding higher differentiation efficiency, comparable levels of drug metabolism activity and significantly improved biosynthetic activity. The work developed in this thesis provides novel strategies for 3D culture of human hepatic cell models, which are reproducible, scalable and compatible with screening platforms. The phenotypic and functional characterization of the in vitro systems performed contributes to the state of the art of human hepatic cell models and can be applied to the improvement of pre-clinical drug development efficiency of the process, model disease and ultimately, development of cell-based therapeutic strategies for liver failure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurological disorders are a major concern in modern societies, with increasing prevalence mainly related with the higher life expectancy. Most of the current available therapeutic options can only control and ameliorate the patients’ symptoms, often be-coming refractory over time. Therapeutic breakthroughs and advances have been hampered by the lack of accurate central nervous system (CNS) models. The develop-ment of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of novel therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmentally, anatomically and physiologically) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity). The in vitro recapitulation of CNS phenotypic and functional features requires the implementation of advanced culture strategies that enable to mimic the in vivo struc-tural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. This thesis aimed at the development of novel human 3D in vitro CNS models by integrat-ing agitation-based culture systems and a wide array of characterization tools. Neural differentiation of hNSC as 3D neurospheres was explored in Chapter 2. Here, it was demonstrated that human midbrain-derived neural progenitor cells from fetal origin (hmNPC) can generate complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes. Chapter 3 focused on the development of cellular characterization assays for cell aggregates based on light-sheet fluorescence imaging systems, which resulted in increased spatial resolu-tion both for fixed samples or live imaging. The applicability of the developed human 3D cell model for preclinical research was explored in Chapter 4, evaluating the poten-tial of a viral vector candidate for gene therapy. The efficacy and safety of helper-dependent CAV-2 (hd-CAV-2) for gene delivery in human neurons was evaluated, demonstrating increased neuronal tropism, efficient transgene expression and minimal toxicity. The potential of human 3D in vitro CNS models to mimic brain functions was further addressed in Chapter 5. Exploring the use of 13C-labeled substrates and Nucle-ar Magnetic Resonance (NMR) spectroscopy tools, neural metabolic signatures were evaluated showing lineage-specific metabolic specialization and establishment of neu-ron-astrocytic shuttles upon differentiation. Chapter 6 focused on transferring the knowledge and strategies described in the previous chapters for the implementation of a scalable and robust process for the 3D differentiation of hNSC derived from human induced pluripotent stem cells (hiPSC). Here, software-controlled perfusion stirred-tank bioreactors were used as technological system to sustain cell aggregation and dif-ferentiation. The work developed in this thesis provides practical and versatile new in vitro ap-proaches to model the human brain. Furthermore, the culture strategies described herein can be further extended to other sources of neural phenotypes, including pa-tient-derived hiPSC. The combination of this 3D culture strategy with the implemented characterization methods represents a powerful complementary tool applicable in the drug discovery, toxicology and disease modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i) 3-OHGA causes the death of astrocytes, (ii) deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii) high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To characterize the relaxation induced by BAY 41-2272 in human ureteral segments. Ureter specimens (n = 17) from multiple organ human deceased donors (mean age 40 ± 3.2 years, male/female ratio 2:1) were used to characterize the relaxing response of BAY 41-2272. Immunohistochemical analysis for endothelial and neuronal nitric oxide synthase, guanylate cyclase stimulator (sGC) and type 5 phosphodiesterase was also performed. The potency values were determined as the negative log of the molar to produce 50% of the maximal relaxation in potassium chloride-precontracted specimens. The unpaired Student t test was used for the comparisons. Immunohistochemistry revealed the presence of endothelial nitric oxide synthase in vessel endothelia and neuronal nitric oxide synthase in urothelium and nerve structures. sGC was expressed in the smooth muscle and urothelium layer, and type 5 phosphodiesterase was present in the smooth muscle only. BAY 41-2272 (0.001-100 μM) relaxed the isolated ureter in a concentration dependent manner, with a potency and maximal relaxation value of 5.82 ± 0.14 and 84% ± 5%, respectively. The addition of nitric oxide synthase and sGC inhibitors reduced the maximal relaxation values by 21% and 45%, respectively. However, the presence of sildenafil (100 nM) significantly potentiated (6.47 ± 0.10, P <.05) this response. Neither glibenclamide or tetraethylammonium nor ureteral urothelium removal influenced the relaxation response by BAY 41-2272. BAY 41-2272 relaxes the human isolated ureter in a concentration-dependent manner, mainly by activating the sGC enzyme in smooth muscle cells rather than in the urothelium, although a cyclic guanosine monophosphate-independent mechanism might have a role. The potassium channels do not seem to be involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the influence of gastrointestinal environmental factors (pH, digestive enzymes, food components, medicaments) on the survival of Lactobacillus casei Shirota and Lactobacillus casei LC01, using a semi-dynamic in vitro model that simulates the transit of microorganisms through the human GIT. The strains were first exposed to different simulated gastric juices for different periods of time (0, 30, 60 and 120 min), and then to simulated intestinal fluids for zero, 120, 180 and 240 min, in a step-wise format. The number of viable cells was determined after each step. The influence of food residues (skim milk) in the fluids and resistance to medicaments commonly used for varied therapeutic purposes (analgesics, antiarrhythmics, antibiotics, antihistaminics, proton pump inhibitors, etc.) were also evaluated. Results indicated that survival of both cultures was pH and time dependent, and digestive enzymes had little influence. Milk components presented a protective effect, and medicaments, especially anti-inflammatory drugs, influenced markedly the viability of the probiotic cultures, indicating that the beneficial effects of the two probiotic cultures to health are dependent of environmental factors encountered in the human gastrointestinal tract.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/Aims: It is a challenge to adapt traditional in vitro diffusion experiments to ocular tissue. Thus, the aim of this work was to present experimental evidence on the integrity of the porcine cornea, barrier function and maintenance of electrical properties for 6 h of experiment when the tissue is mounted on an inexpensive and easy-to-use in vitro model for ocular iontophoresis. Methods: A modified Franz diffusion cell containing two ports for the insertion of the electrodes and a receiving compartment that does not need gassing with carbogen was used in the studies. Corneal electron transmission microscopy images were obtained, and diffusion experiments with fluorescent markers were performed to examine the integrity of the barrier function. The preservation of the negatively charged corneal epithelium was verified by the determination of the electro-osmotic flow of a hydrophilic and non-ionized molecule. Results: The diffusion cell was able to maintain the temperature, homogenization, porcine epithelial corneal structure integrity, barrier function and electrical characteristics throughout the 6 h of permeation experiment, without requiring CO(2) gassing when the receiving chamber was filled with 25 m M of HEPES buffer solution. Conclusion: The system described here is inexpensive, easy to handle and reliable as an in vitro model for iontophoretic ocular delivery studies. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aims of this project was to develop an arterial aneurysm using either enzymatic or laser degradation of the arterial wall without affecting the viability of the tissue and to cultivate the arteries under pulsatile flow conditions in a vascular bioreactor with a view to investigate the progress of the disease. Characteristics of aneurysms are the degradation of smooth muscle cells, collagen and elastin. Detached smooth muscle cells and degradation of the collagen matrix and elastin fibres were observed in arteries degraded with enzymes elastase and collagenase. Only remnants of the arterial wall were detected after cultivation. This might be a suitable model for late stage aneurysms. Arteries treated with the laser system showed no charring or heat damage of the not dissected area. Collagen matrix, smooth muscle cells and elastin fibres were intact. A clear defined cut was made in a depth of 200 μm and tissue was removed. Following cultivation of these arteries a dilation of the laser-eroded area was observed. This model can mimic atherosclerotic aneurysms, when plaques weaken the tunica media of the blood vessel wall and rupture. Limitations of this study were contamination of the bioreactor system and a low number of cultivations. The aim to generate a living arterial aneurysm in vitro was not achieved. Tissue viability decreased to the level of negative controls after cultivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: The spatio-temporal pattern of arrhythmias in the embryonic/fetal heart subjected to a transient hypoxic or hypothermic stress remains to be established. METHODS AND RESULTS: Spontaneously beating hearts or isolated atria, ventricles, and conotruncus from 4-day-old chick embryos were subjected in vitro to 30-minute anoxia and 60-minute reoxygenation. Hearts were also submitted to 30-minute hypothermia (0-4 degrees C) and 60-minute rewarming. ECG disturbances and alterations of atrial and ventricular electromechanical delay (EMD) were systematically investigated. Baseline functional parameters were stable during at least 2 hours. Anoxia induced tachycardia, followed by bradycardia, atrial ectopy, first-, second-, and third-degree atrio-ventricular blocks and, finally, transient electromechanical arrest after 6.8 minutes, interquartile ranges (IQR) 3.1-16.2 (n = 8). Reoxygenation triggered also Wenckebach phenomenon and ventricular escape beats. At the onset of reoxygenation QT, PR, and ventricular EMD increased by 68%, 70%, and 250%, respectively, whereas atrial EMD was not altered. No fibrillations, no ventricular ectopic beats, and no electromechanical dissociation were observed. Arrhythmic activity of the isolated atria persisted throughout anoxia and upon reoxygenation, whereas activity of the isolated ventricles abruptly ceased after 5 minutes of anoxia and resumed after 5 minutes of reoxygenation. During hypothermia-rewarming, cardiac activity stopped at 17.9 degrees C, IQR 16.2-20.6 (n = 4) and resumed at the same temperature with no arrhythmias. All preparations fully recovered after 40 minutes of reoxygenation or rewarming. CONCLUSION: In the embryonic heart, arrhythmias mainly originated in the sinoatrial tissue and resembled those observed in the adult heart. Furthermore, oxygen readmission was by far more arrhythmogenic than rewarming and the chronotropic, dromotropic, and inotropic effects were fully reversible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important cytokine role in dengue fever pathogenesis has been described. These molecules can be associated with haemorrhagic manifestations, coagulation disorders, hypotension and shock, all symptoms implicated in vascular permeability and disease worsening conditions. Several immunological diseases have been treated by cytokine modulation and dexamethasone is utilized clinically to treat pathologies with inflammatory and autoimmune ethiologies. We established an in vitro model with human monocytes infected by dengue virus-2 for evaluating immunomodulatory and antiviral activities of potential pharmaceutical products. Flow cytometry analysis demonstrated significant dengue antigen detection in target cells two days after infection. TNF-alpha, IFN-alpha, IL-6 and IL-10 are produced by in vitro infected monocytes and are significantly detected in cell culture supernatants by multiplex microbead immunoassay. Dexamethasone action was tested for the first time for its modulation in dengue infection, presenting optimistic results in both decreasing cell infection rates and inhibiting TNF-alpha, IFN-alpha and IL-10 production. This model is proposed for novel drug trials yet to be applyed for dengue fever.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: To define properly the consequences of oxygen deprivation and readmission for the functioning of the developing heart. METHODS: Spontaneously beating hearts excised from three-day-old chick embryos were loaded with a drop of viscous nontoxic silicone oil and cultured in a special chamber in which variations of PO2 at the tissue level could be strictly controlled. All parts of the hearts were simultaneously submitted to identical changes in PO2. Instantaneous heart rate, myocardial shortening, velocities of contraction and relaxation, and mechanical propagation along the heart tube were determined photometrically. RESULTS: The hearts, submitted to a PO2 ramp (0 to 9.3 kPa) or absolute anoxia, reacted rapidly, reversibly and reproducibly. Under sustained anoxia, ventricular activity stopped after 3.8±0.7 mins (n=4) and then resumed intermittently in the form of tachycardic bursts. Brief anoxia (1 min) provoked tachycardia followed by bradycardia, induced contracture, depressed contractility and retarded atrioventricular propagation. Upon reoxygenation, ventricular contractions ceased suddently for 20±11 s (n=5), whereas a residual atrial activity could persist. The duration of this arrest and the rate of recovery depended on duration of the preceding anoxia. Such a dysfunction constitutes the embryonic analogue of the oxygen paradox observed in adult hearts. Initial impulses, including arrhythmic activity, originated exclusively from the atrium, and no ventricular ectopic beats were detected whatever the conditions of oxygenation. CONCLUSIONS: This in vitro model seems promising for studying the pathophysiological mechanisms associated with hypoxia and reoxygenation in the developing heart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis (MS). Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated by agents such as interferon-g (IFN-g) and lipopolysaccharide (LPS). Aggregating brain cultures exposed to a repeated treatment (3 fold) with IFN-g (50 U/ml) and LPS (5 ug/ml) were used as an in vitro model of demyelination. Demyelination could be due to either the direct effect of IFN-g and LPS on oligodendrocytes or the IFN-g and LPS-induced inflammatory response. We investigated the involvement of microglial reactivity in demylination and remyelination by using minocycline, an antibiotic known to block microglial reactivity. Changes in myelination were examined by measuring the expression of myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) at the mRNA level by quantitative RT-PCR and at the protein level by Western blotting and immunohistochemistry. To evaluate brain inflammatory reactions, microglia were stained with isolectin B4 (IB4), quantitative RT-PCR was used to determine the expression of tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), and inducible NO synthase (iNOS). The repeated treatment with IFN-g and LPS caused demyelination, as indicated by a decrease in MBP and MOG expression. It also activated microglial cells, and up-regulated TNF-a, IL-6, and iNOS expression. Although minocycline did not affect the IFN-g- and LPS-induced upregulation of TNF-a, IL-6, it decreased the number of IB4-labeled microglial cells. Furthermore, minocycline did not prevent demyelination, whereas it strongly increased MBP expression one week after the end of the demyelinating treatment. In conclusion, the present results show that minocycline promoted remyelination after IFN-g- and LPS-induced demyelination, presumably due to its effects on microglial cells.