878 resultados para 19F NMR spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incubation of the model pollutant [U-14C]'-4-fluorobiphenyl (4FBP) in soil, in the presence and absence of biphenyl (a co-substrate), was carried out in order to study the qualitative disposition and fate of the compound using 14C-HPLC and 19F NMR spectroscopy. Components accounted for using the radiolabel were volatilization, CO2 evolution, organic solvent extractable and bound residue. Quantitative analysis of these data gave a complete mass balance. After sample preparation. 14C-HPLC was used to establish the number of 4FBP related components present in the organic solvent extract. 19F NMR was also used to quantify the organic extracts and to identify the components of the extract. Both approaches showed that the composition of the solvent extractable fractions comprised only parent compound with no metabolites present. As the 14C radiolabel was found to be incorporated into the soil organic matter this indicates that metabolites were being generated, but were highly transitory as incorporation into the SOM was rapid. The inclusion of the co-substrate biphenyl was to increase the overall rate of degradation of 4FBP in soil. The kinetics of disappearance of parent from the soil using the data obtained were investigated from both techniques. This is the first report describing the degradation of a fluorinated biphenyl in soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report high resolution solution 19F NMR spectra of fluorine-labeled rhodopsin mutants in detergent micelles. Single cysteine substitution mutants in the cytoplasmic face of rhodopsin were labeled by attachment of the trifluoroethylthio (TET), CF3-CH2-S, group through a disulfide linkage. TET-labeled cysteine mutants at amino acid positions 67, 140, 245, 248, 311, and 316 in rhodopsin were thus prepared. Purified mutant rhodopsins (6–10 mg), in dodecylmaltoside, were analyzed at 20°C by solution 19F NMR spectroscopy. The spectra recorded in the dark showed the following chemical shifts relative to trifluoroacetate: Cys-67, 9.8 ppm; Cys-140, 10.6 ppm; Cys-245, 9.9 ppm; Cys-248, 9.5 ppm; Cys-311, 9.9 ppm; and Cys-316, 10.0 ppm. Thus, all mutants showed chemical shifts downfield that of free TET (6.5 ppm). On illumination to form metarhodopsin II, upfield changes in chemical shift were observed for 19F labels at positions 67 (−0.2 ppm) and 140 (−0.4 ppm) and downfield changes for positions 248 (+0.1 ppm) and 316 (+0.1 ppm) whereas little or no change was observed at positions 311 and 245. On decay of metarhodopsin II, the chemical shifts reverted largely to those originally observed in the dark. The results demonstrate the applicability of solution 19F NMR spectroscopy to studies of the tertiary structures in the cytoplasmic face of intact rhodopsin in the dark and on light activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Escherichia coli dihydrofolate reductase (DHFR; EC 1.5.1.3) contains five tryptophan residues that have been replaced with 6-19F-tryptophan. The 19F NMR assignments are known in the native, unliganded form and the unfolded form. We have used these assignments with stopped-flow 19F NMR spectroscopy to investigate the behavior of specific regions of the protein in real time during urea-induced unfolding. The NMR data show that within 1.5 sec most of the intensities of the native 19F resonances of the protein are lost but only a fraction (approximately 20%) of the intensities of the unfolded resonances appears. We postulate that the early disappearance of the native resonances indicates that most of the protein rapidly forms an intermediate in which the side chains have considerable mobility. Stopped-flow far-UV circular dichroism measurements indicate that this intermediate retains native-like secondary structure. Eighty percent of the intensities of the NMR resonances assigned to the individual tryptophans in the unfolded state appear with similar rate constants (k approximately 0.14 sec-1), consistent with the major phase of unfolding observed by stopped-flow circular dichroism (representing 80% of total amplitude). These data imply that after formation of the intermediate, which appears to represent an expanded structural form, all regions of the protein unfold at the same rate. Stopped-flow measurements of the fluorescence and circular dichroism changes associated with the urea-induced unfolding show a fast phase (half-time of about 1 sec) representing 20% of the total amplitude in addition to the slow phase mentioned above. The NMR data show that approximately 20% of the total intensity for each of the unfolded tryptophan resonances is present at 1.5 sec, indicating that these two phases may represent the complete unfolding of the two different populations of the native protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binding of 13C-labeled N-acetylgalactosamine (13C-GalNAc) and N-trifluoroacetylgalactosamine (19F-GalNAc) to Artocarpus integrifolia agglutinin has been studied using 13C and 19F nuclear magnetic resonance spectroscopy, respectively. Binding of these saccharides resulted in broadening of the resonances, and no change in chemical shift was observed, suggesting that the alpha- and beta-anomers of 13C-GalNAc and 19F-GalNAc experience a magnetically equivalent environment in the lectin combining site. The alpha- and beta-anomers of 13C-GalNAc and 19F-GalNAc were found to be in slow exchange between free and protein bound states. Binding of 13C-GalNAc was studied as a function of temperature. From the temperature dependence of the line broadening, the thermodynamic and kinetic parameters were evaluated. The association rate constants obtained for the alpha-anomers of 13C-GalNAc and 19F-GalNAc (k+1 = 1.01 x 10(5) M-1.s-1 and 0.698 x 10(5) M-1.s-1, respectively) are in close agreement with those obtained for the corresponding beta-anomers (k+1 = 0.95 x 10(5) M-1.s-1 and 0.65 x 10(5) M-1.s-1, respectively), suggesting that the two anomers bind to the lectin by a similar mechanism. In addition these values are several orders of magnitude slower than those obtained for diffusion controlled processes. The dissociation rate constants obtained are 49.9, 56.9, 42, and 43 s-1, respectively, for the alpha- and beta-anomers of 13C-GalNAc and 19F-GalNAc. A two-step mechanism has been proposed for the interaction of 13C-GalNAc and 19F-GalNAc with A. integrifolia lectin in view of the slow association rates and high activation entropies. The thermodynamic parameters obtained for the association and dissociation reactions suggest that the binding process is entropically favored and that there is a small enthalpic contribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enzyme immobilisation is the conversion of a soluble enzyme molecule into a solid particle form. This allows the recovery of the enzyme catalyst for its re-use and avoids protein contamination of the product streams. A better understanding of immobilised enzymes is necessary for their rational development. A more rational design can help enormously in the applicability of these systems in different areas, from biosensors to chemical industry. Immobilised enzymes are challenging systems to study and very little information is given by conventional biochemical analysis such as catalytic activity and amount of protein. Here, solid-state NMR has been applied as the main technique to study these systems and evaluate them more precisely. Various approaches are presented for a better understanding of immobilised enzymes, which is the aim of this thesis. Firstly, the requirements of a model system of study will be discussed. The selected systems will be comprehensibly characterised by a variety of techniques but mainly by solid-state NMR. The chosen system will essentially be the enzyme α-chymotrypsin covalently immobilised on two functionalised inorganic supports – epoxide silica and epoxide alumina – and an organic support – Eupergit®. The study of interactions of immobilised enzymes with other species is vital for understanding the macromolecular function and for predicting and engineering protein behaviour. The study of water, ions and inhibitors interacting with various immobilised enzyme systems is covered here. The interactions of water and sodium ions were studied by 17O and 23Na multiple-quantum techniques, respectively. Various pore sizes of the supports were studied for the immobilised enzyme in the presence of labelled water and sodium cations. Finally, interactions between two fluorinated inhibitors and the active site of the enzyme will be explored using 19F NMR, offering a unique approach to evaluate catalytic behaviour. These interactions will be explored by solution-state NMR firstly, then by solid-state NMR. NMR has the potential to give information about the state of the protein in the solid support, but the precise molecular interpretation is a difficult task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To date, biodegradable networks and particularly their kinetic chain lengths have been characterized by analysis of their degradation products in solution. We characterize the network itself by NMR analysis in the solvent-swollen state under magic angle spinning conditions. The networks were prepared by photoinitiated cross-linking of poly(dl-lactide)−dimethacrylate macromers (5 kg/mol) in the presence of an unreactive diluent. Using diffusion filtering and 2D correlation spectroscopy techniques, all network components are identified. By quantification of network-bound photoinitiator fragments, an average kinetic chain length of 9 ± 2 methacrylate units is determined. The PDLLA macromer solution was also used with a dye to prepare computer-designed structures by stereolithography. For these networks structures, the average kinetic chain length is 24 ± 4 methacrylate units. In all cases the calculated molecular weights of the polymethacrylate chains after degradation are maximally 8.8 kg/mol, which is far below the threshold for renal clearance. Upon incubation in phosphate buffered saline at 37 °C, the networks show a similar mass loss profile in time as linear high-molecular-weight PDLLA (HMW PDLLA). The mechanical properties are preserved longer for the PDLLA networks than for HMW PDLLA. The initial tensile strength of 47 ± 2 MPa does not decrease significantly for the first 15 weeks, while HMW PDLLA lost 85 ± 5% of its strength within 5 weeks. The physical properties, kinetic chain length, and degradation profile of these photo-cross-linked PDLLA networks make them most suited materials for orthopedic applications and use in (bone) tissue engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventionally two-dimensional NMR spectra are recorded in the absolute-intensity mode (1-4). It has recently been demonstrated that absorption-mode 2D spectra have much higher resolution and are the preferred mode of presentation, especially for 2D spectra of biomolecules (5-7). Indeed, any experimental scheme which yields phasemixed lineshapes is subject to modification to yield pure-phase spectra, even at the expense of intensity and anomalous multiplet structure (8-10). For this purpose two types of filters are already known: the z filter (9, 20) and the purging pulse (8, 10). In this note, we propose a 45” pulse pair as a filter for obtaining pure-phase 2D spectra, mainly for experiments in which the above filters do not yield pure-phase spectra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A generalized pulse pair has been suggested in which the longitudinal spin order is retained and the transverse components cancelled by random variation of the interval between pulses, in successive applications of the two-dimensional NMR algorithm. This method leads to pure phases and has been exploited to provide a simpler scheme for two-spin filtering and for pure phase spectroscopy in multiple-quantum-filtered two-dimensional NMR experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1H and 19F spin-lattice relaxation times in polycrystalline diammonium hexafluorozirconate have been measured in the temperature range of 10–400 K to elucidate the molecular motion of both cation and anion. Interesting features such as translational diffusion at higher temperatures, molecular reorientational motion of both cation and anion groups at intermediate temperatures and quantum rotational tunneling of the ammonium group at lower temperatures have been observed. Nuclear magnetic resonance (NMR) relaxation time results correlate well with the NMR second moment and conductivity studies reported earlier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteins are complex biomacromolecules playing fundamental roles in the physiological processes of all living organisms. They function as structural units, enzymes, transporters, process regulators, and signal transducers. Defects in protein functions often derive from genetic mutations altering the protein structure, and impairment of essential protein functions manifests itself as pathological conditions. Proteins operate through interactions, and all protein functions depend on protein structure. In order to understand biological mechanisms at the molecular level, one has to know the structures of the proteins involved. This thesis covers structural and functional characterization of human filamins. Filamins are actin-binding and -bundling proteins that have numerous interaction partners. In addition to their actin-organizing functions, filamins are also known to have roles in cell adhesion and locomotion, and to participate in the logistics of cell membrane receptors, and in the coordination of intracellular signaling pathways. Filamin mutations in humans induce severe pathological conditions affecting the brain, bones, limbs, and the cardiovascular system. Filamins are large modular proteins composed of an N-terminal actin-binding domain and 24 consecutive immunoglobulin-like domains (IgFLNs). Nuclear magnetic resonance (NMR) spectroscopy is a versatile method of gaining insight into protein structure, dynamics and interactions. NMR spectroscopy was employed in this thesis to study the atomic structure and interaction mechanisms of C-terminal IgFLNs, which are known to house the majority of the filamin interaction sites. The structures of IgFLN single-domains 17 and 23 and IgFLN domain pairs 16-17 and 18-19 were determined using NMR spectroscopy. The structures of domain pairs 16 17 and 18 19 both revealed novel domain domain interaction modes of IgFLNs. NMR titrations were employed to characterize the interactions of filamins with glycoprotein Ibα, FilGAP, integrin β7 and dopamine receptors. Domain packing of IgFLN domain sextet 16 21 was further characterized using residual dipolar couplings and NMR relaxation analysis. This thesis demonstrates the versatility and potential of NMR spectroscopy in structural and functional studies of multi-domain proteins.