977 resultados para H2O
Resumo:
The aim of this work was to characterize the effects of partial inhibition of respiratory complex I by rotenone on H2O2 production by isolated rat brain mitochondria in different respiratory states. Flow cytometric analysis of membrane potential in isolated mitochondria indicated that rotenone leads to uniform respiratory inhibition when added to a suspension of mitochondria. When mitochondria were incubated in the presence of a low concentration of rotenone (10 nm) and NADH-linked substrates, oxygen consumption was reduced from 45.9 ± 1.0 to 26.4 ± 2.6 nmol O2 mg(-1) min(-1) and from 7.8 ± 0.3 to 6.3 ± 0.3 nmol O2 mg(-1) min(-1) in respiratory states 3 (ADP-stimulated respiration) and 4 (resting respiration), respectively. Under these conditions, mitochondrial H2O2 production was stimulated from 12.2 ± 1.1 to 21.0 ± 1.2 pmol H2O2 mg(-1) min(-1) and 56.5 ± 4.7 to 95.0 ± 11.1 pmol H2O2 mg(-1) min(-1) in respiratory states 3 and 4, respectively. Similar results were observed when comparing mitochondrial preparations enriched with synaptic or nonsynaptic mitochondria or when 1-methyl-4-phenylpyridinium ion (MPP(+)) was used as a respiratory complex I inhibitor. Rotenone-stimulated H2O2 production in respiratory states 3 and 4 was associated with a high reduction state of endogenous nicotinamide nucleotides. In succinate-supported mitochondrial respiration, where most of the mitochondrial H2O2 production relies on electron backflow from complex II to complex I, low rotenone concentrations inhibited H2O2 production. Rotenone had no effect on mitochondrial elimination of micromolar concentrations of H2O2. The present results support the conclusion that partial complex I inhibition may result in mitochondrial energy crisis and oxidative stress, the former being predominant under oxidative phosphorylation and the latter under resting respiration conditions.
Resumo:
The aggregation behavior of the non-ionic surfactant Renex-100 in aqueous solutions and mesophases was evaluated by SAXS in a wide range of concentrations, between 20 and 30 °C. Complementary, water interactions were defined by DSC curves around 0°C. SAXS showed that the system undergoes the following phase transitions, from diluted to concentrated aqueous solutions: 1) isotropic solution of Renex aggregates; 2) hexagonal mesophase; 3) lamellar mesophase; and 4) isotropic solution. DSC analysis indicated the presence of interfacial water above 70wt%, which agreed with the segregation of free water to form the structural mesophases observed by SAXS bellow this concentration.
Resumo:
Reaction of K-3[Cr(ox)(3)] (ox = oxalate) with nickel(II) and tris(2-aminoethyl)amine (tren) in aqueous solution resulted in isolation of the bimetallic assembly [Ni-3(tren)(4)(H2O)(2)][Cr(ox)(3)](2). 6H(2)O. The polymeric complex {[Ni-2(tren)(3)][ClO4](4). H2O}(n) has been prepared by reaction of nickel(II) perchlorate and tren in aqueous solution. From the same reaction mixture the complex [Ni-2(tren)(2)(aepd)][ClO4](4). 2H(2)O (aepd = N-(2-aminoethyl)pyrrolidine-3,4-diamine), in which a bridging tren ligand contains a carbon-carbon bond between two arms forming a substituted pyrrolidine, has been isolated. The complexes have been characterized by X-ray crystallography. The magnetic susceptibility (300-4.2 K) and magnetization data (2, 4 K, H = 0-5 T) for {[Ni-2(tren)(3)][ClO4](4). H2O}(n) (300 K , 4.23 mu(B)) exhibit evidence of weak antiferromagnetic coupling and zero field splitting (2J = -1.8 cm(-1); \ D\ = 2 cm(-1)) at low temperature. For [Ni-3(tren)(4)(H2O)(2)][Cr(ox)(3)](2). 6H(2)O the susceptibility data at 300 K are indicative of uncoupled nickel(II) and chromium(III) sites with zero-field splitting and intramolecular antiferromagnetic coupling predicted at low temperature.
Resumo:
The crystal structures of the Tutton salts (NH4)(2)[Cu(H2O)(6)](SO4)(2), diammonium hexaaquacopper disulfate, formed with normal water and isotopically substituted (H2O)-O-18, have been determined by X-ray diffraction at 9.5 K and are very similar, with Cu-O(7) the longest of the Cu-O bonds of the Jahn-Teller distorted octahedral [Cu(H2O)(6)](2+) complex. It is known that structural differences accompany deuteration of (NH4)(2)[Cu(H2O)(6)](SO4)(2), the most dramatic of which is a switch to Cu-O(8) as the longest such bond. The present result suggests that the structural differences are associated with hydrogen-bonding effects rather than with increased mass of the water ligands affecting the Jahn-Teller coupling. The Jahn-Teller distortions and hydrogen-bonding contacts in the compounds are compared with those reported for other Tutton salts at ambient and high pressure.
Resumo:
The temperature dependence of the X- and Q-band EPR spectra of Cs-2[Zn(H2O)(6)](ZrF6)(2) containing similar to1% Cu2+ is reported. All three molecular g-values vary with temperature, and their behavior is interpreted using a model in which the potential surface of the Jahn-Teller distorted Cu(H2O)(6)(2+) ion is perturbed by an orthorhombic strain induced by interactions with the surrounding lattice. The strain parameters are significantly smaller than those reported previously for the Cu(H2O)(6)(2+) ion in similar lattices. The temperature dependence of the two higher g-values suggests that in the present compound the lattice interactions change slightly with temperature. The crystal structure of the Cs-2[Zn(H2O)(6)](ZrF6)(2) host is reported, and the geometry of the Zn(H2O)(6)(2+) ion is correlated with lattice strain parameters derived from the EPR spectrum of the guest Cu2+ complex.
Resumo:
Carbon gasification with steam to produce H-2 and CO is an important reaction widely used in industry for hydrogen generation. Although the literature is vast, the. mechanism for the formation of H-2 is still unclear. In particular, little has, been done to investigate the potential of molecular orbital theory to distinguish different mechanism possibilities. In this work, we used molecular orbital theory to demonstrate a favorable energetic pathway where H2O is first physically adsorbed on the virgin graphite surface with negligible change in molecular structure. Chemisorption occurs via O approaching the carbon edge site with one H atom stretching away from the O in the transition state. This is followed by a local minimum. state in which the stretching H is further disconnected from the O atoms and the remaining OH group is still on the carbon edge site. The disconnected H then pivot around the OH group to bond with the H of the OH group and forms H-2. The O atom remaining on the carbon edge site is subsequently desorbed as CO. The reverse occurs when H-2 reacts with the surface oxygen to produce H2O.
Resumo:
L’objectiu del present estudi és comparar els vectors de parà metres de l’aigua, producció de fangs, costos i personal entre 2 tipus d’instal·lacions EDAR al municipi de Begues; una ja existent amb tractament secundari i terciari mitjançant un reactor biològic i una potencial amb tractament secundari i terciari mitjançant aiguamolls construïts. La finalitat del projecte és determinar, grà cies a l’estudi dels principals vectors ambientals de la infraestructura i a altres estudiats per na Susana Forero Sánchez, quina de les 2 tipologies d’instal·lació s’ajusta més al territori i a les necessitats de tractament de les aigües del mateix. Els resultats de la investigació indiquen que tant els costos d’explotació com la producció de fangs i el personal donen avantatge als aiguamolls construïts, però els costos capitals i el tractament de nutrients són favorables per a la depuradora actual. Amb el projecte de Susana Forero Sánchez, les conclusions que es poden establir en referència a la decisió d’instal·lar una depuradora o una altra segons els vectors estudiats indiquen que l’EDAR sense aiguamolls té més probabilitat de ser escollida com la més adient per les necessitats del territori d’estudi.
Resumo:
This poster informs about the danger of dehydration caused by taking Ecstasy stating: 'Ecstasy makes you dehydrate and dancing makes you sweat, so if you're doing both sip about a pint of water an hour, have the odd sugary drink and take breaks from dancing'. It also provides contact details for the National Drugs Helpline. Tel: 0800 776600.
Resumo:
The magnetic structure of the [Cu4(bpy)4(aspartate)2(H2O)3](ClO4)4·2.5 H2Ocrystal - using fractional coordinates determined at room-temperature ¿ has beenanalysed in detail. This analysis has been carried out by extending our first principlesbottom-up theoretical approach, which was initially designed to study through-spacemagnetic interactions, to handle through-bond magnetic interactions. The only input datarequired by this approach are the values of the computed JAB exchange parameters for allthe unique pairs of spin-containing centres. The results allow the magnetic structure ofthe crystal, which presents two types of isolated tetranuclear CuII clusters, to be definedin quantitative terms. Each of these clusters presents ferro and antiferromagneticinteractions, the former being stronger, although outnumbered by the latter. Thecomputed magnetic susceptibility curve shows the same qualitative features as theexperimental data. However, there are small differences that are presumed to beassociated with the use of room-temperature crystal coordinates.
Resumo:
The magnetic structure of the [Cu4(bpy)4(aspartate)2(H2O)3](ClO4)4·2.5 H2Ocrystal - using fractional coordinates determined at room-temperature ¿ has beenanalysed in detail. This analysis has been carried out by extending our first principlesbottom-up theoretical approach, which was initially designed to study through-spacemagnetic interactions, to handle through-bond magnetic interactions. The only input datarequired by this approach are the values of the computed JAB exchange parameters for allthe unique pairs of spin-containing centres. The results allow the magnetic structure ofthe crystal, which presents two types of isolated tetranuclear CuII clusters, to be definedin quantitative terms. Each of these clusters presents ferro and antiferromagneticinteractions, the former being stronger, although outnumbered by the latter. Thecomputed magnetic susceptibility curve shows the same qualitative features as theexperimental data. However, there are small differences that are presumed to beassociated with the use of room-temperature crystal coordinates.
Resumo:
Stable isotope compositions of a suite of magmatic amphiboles from alkaline basalts and andesitic rocks were examined to constrain the effects of degassing processes on the hydrogen isotope compositions. The Fe3+ (as Fe3+/Fe-total) and H2O contents, as well as the H isotope compositions of the amphiboles, differ markedly (27-58%, 0.5-2.2 wt%, -107 to -15 parts per thousand, respectively) but indicate systematic variations. The observed trends can be explained either as dehydrogenation or dehydration processes, both of which are coupled to oxidation processes, the latter most probably related to O2- substitution within amphiboles. The dehydrogenation-dehydration models can be used to assess the primary compositions of the magmas. As an important example, delta D values of amphiboles of Martian meteorites are discussed in a similar context. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
With the aim of understanding the mechanisms that control the metamorphic transition from the CH4- to the H2O-(CO2)-dominated fluid zone in the Helvetic domain of the Central Alps of Switzerland, fluid inclusions in quartz, illite ``crystallinity'' index, vitrinite reflectance, and the stable isotope compositions of vein and whole rock minerals and fluids trapped in quartz were investigated along four cross-sections. Increasing temperature during prograde metamorphism led to the formation of dry gas by hydrocarbon cracking in the CH4-zone. Fluid immiscibility in the H2O-CH4-(CO2)-NaCl system resulted in cogenetic, CH4- and H2O-dominated fluid inclusions. In the CH4-zone, fluids were trapped at temperatures <= 270 +/- 5 degrees C. The end of the CH4-zone is markedby a sudden increase of CO2 content in the gas phase of fluid inclusions. At temperatures > 270 +/- 5 degrees C, in the H2O-zone, the total amount of volatiles within the fluid decreased below 1 mol% with no immiscibility. This resulted m total homogenization temperatures of H2O-(CO2-CH4)-NaCl inclusions below 180 degrees C. Hydrogen isotope compositions of methane in fluid inclusion have delta D values of less than -100 parts per thousand in the CH4-zone, typical for an origin through cracking of higher hydrocarbons, but where the methane has not equilibrated with the pore water. delta D values of fluid inclusion water are around -40 parts per thousand., in isotopic equilibrium with phyllosilicates of the whole rocks. Within the CH4 to H2O(CO2) transition zone, delta D(H2O) values in fluid inclusions decrease to -130 parts per thousand interpreted to reflect the contribution of deuterium depleted water from methane oxidation. In the H2O-zone, delta D(H2O) values increase again towards an average of -30 parts per thousand which is again consistent with isotopic equilibrium with host-rock phyllosilicates. delta C-13 values of methane in fluid inclusions from the CH4-zone are around -27 parts per thousand in isotopic equilibrium with calcite in veins and whole rocks. The delta C-13(CH4) values decrease to less than -35 parts per thousand at the transition to the H2O-zone and are no longer in equilibrium with the carbonates in the whole rocks. delta C-13 values of CO, are variable but too low to be in equilibrium with the wall rock fluids, compatible with a contribution of CO2 from closed system oxidation of methane. Differences in isotopic composition between host-rock and Alpine fissure carbonate are generally small, suggesting that the amount of CO2 produced by oxidation of methane was small compared to the C-budget in the rocks and local pore fluids were buffered by the wall rocks during precipitation of calcite within the fissures. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This work presents the optimization of the microwave-assisted hydrothermal synthesis of [Zn(BDC)(H2O)2]n . The reactions were carried out at the fixed temperature of 120 ºC for 10, 20, 30 and 40 min. Pure crystalline [Zn(BDC)(H2O)2]n was obtained in high yield (ca. 90%) with a reaction time of 10 min. The phase obtained and its purity was confirmed by Rietveld refinement, with a final value for Rwp/Rexp equal to 1.48. Increased reaction times (20, 30 and 40 min) favored the formation of unwanted by products, resulting in mixtures of several crystalline phases.