2 resultados para exploratory data analysis

em Instituto Politécnico de Bragança


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The general purpose of this work is to describe and analyse the financing phenomenon of crowdfunding and to investigate the relations among crowdfunders, project creators and crowdfunding websites. More specifically, it also intends to describe the profile differences between major crowdfunding platforms, such as Kickstarter and Indiegogo. The findings are supported by literature, gathered from different scientific research papers. In the empirical part, data about Kickstarter and Indiegogo was collected from their websites and also complemented with further data from other statistical websites. For finding out specific information, such as satisfaction of entrepreneurs from both platforms, a satisfaction survey was applied among 200 entrepreneurs from different countries. To identify the profile of users of the Kickstarter and of the Indiegogo platforms, a multivariate analysis was performed, using a Hierarchical Clusters Analysis for each platform under study. Descriptive analysis was used for exploring information about popularity of platforms, average cost and the most popular area of projects, profile of users and future opportunities of platforms. To assess differences between groups, association between variables, and answering to the research hypothesis, an inferential analysis it was applied. The results showed that the Kickstarter and Indiegogo are one of the most popular crowdfunding platforms. Both of them have thousands of users and they are generally satisfied. Each of them uses individual approach for crowdfunders. Despite this, they both could benefit from further improving their services. Furthermore, according the results it was possible to observe that there is a direct and positive relationship between the money needed for the projects and the money collected from the investors for the projects, per platform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho incide na análise dos açúcares majoritários nos alimentos (glucose, frutose e sacarose) com uma língua eletrónica potenciométrica através de calibração multivariada com seleção de sensores. A análise destes compostos permite contribuir para a avaliação do impacto dos açúcares na saúde e seu efeito fisiológico, além de permitir relacionar atributos sensoriais e atuar no controlo de qualidade e autenticidade dos alimentos. Embora existam diversas metodologias analíticas usadas rotineiramente na identificação e quantificação dos açúcares nos alimentos, em geral, estes métodos apresentam diversas desvantagens, tais como lentidão das análises, consumo elevado de reagentes químicos e necessidade de pré-tratamentos destrutivos das amostras. Por isso se decidiu aplicar uma língua eletrónica potenciométrica, construída com sensores poliméricos selecionados considerando as sensibilidades aos açucares obtidas em trabalhos anteriores, na análise dos açúcares nos alimentos, visando estabelecer uma metodologia analítica e procedimentos matemáticos para quantificação destes compostos. Para este propósito foram realizadas análises em soluções padrão de misturas ternárias dos açúcares em diferentes níveis de concentração e em soluções de dissoluções de amostras de mel, que foram previamente analisadas em HPLC para se determinar as concentrações de referência dos açúcares. Foi então feita uma análise exploratória dos dados visando-se remover sensores ou observações discordantes através da realização de uma análise de componentes principais. Em seguida, foram construídos modelos de regressão linear múltipla com seleção de variáveis usando o algoritmo stepwise e foi verificado que embora fosse possível estabelecer uma boa relação entre as respostas dos sensores e as concentrações dos açúcares, os modelos não apresentavam desempenho de previsão satisfatório em dados de grupo de teste. Dessa forma, visando contornar este problema, novas abordagens foram testadas através da construção e otimização dos parâmetros de um algoritmo genético para seleção de variáveis que pudesse ser aplicado às diversas ferramentas de regressão, entre elas a regressão pelo método dos mínimos quadrados parciais. Foram obtidos bons resultados de previsão para os modelos obtidos com o método dos mínimos quadrados parciais aliado ao algoritmo genético, tanto para as soluções padrão quanto para as soluções de mel, com R²ajustado acima de 0,99 e RMSE inferior a 0,5 obtidos da relação linear entre os valores previstos e experimentais usando dados dos grupos de teste. O sistema de multi-sensores construído se mostrou uma ferramenta adequada para a análise dos iii açúcares, quando presentes em concentrações maioritárias, e alternativa a métodos instrumentais de referência, como o HPLC, por reduzir o tempo da análise e o valor monetário da análise, bem como, ter um preparo mínimo das amostras e eliminar produtos finais poluentes.