3 resultados para Protection by p-cycles
em Instituto Politécnico de Bragança
Resumo:
Ink Disease is considered one of the most important causes of the decline of chestnut orchards. The break in yield of Castanea sativa Mill is caused by two species: Phytophthora cinnamomi and Phytophthora cambivora, being the first one the foremost pathogen of ink disease in Portugal. P. cinnamomi is one of the most aggressive and widespread plant pathogen with nearly 1,000 host species. This oomycete causes enormous economic losses and it is responsible for the decline of many plant species in Europe and worldwide. Up to now no efficient treatments are available to fight these pathogens. Because of the importance of chestnut at economical and ecological levels, especially in Portugal, it becomes essential to explore the molecular mechanisms that determine the interaction between Phytophthora species and host plants through the study of proteins GIP (glucanase inhibitor protein) and NPP1 (necrosis-inducing Phytophthora protein 1) produced by P. cinnamomi during the infection. The technique of RNA interference was used to knockdown the gip gene of P. cinnamomi. Transformants obtained with the silenced gene have been used to infect C. sativa, in order to determine the effect of gene silencing on the plant phenotype. To know more about the function of GIP and NPP1 involved in the mechanism of infection, the ORF’s of gip and npp1 genes have been cloned to the pTOR-eGFP vector for a future observation of P. cinnamomi transformants with fluorescent microscopy and determination of the subcellular localization. Moreover the prediction by bioinformatics tools indicates that both GIP and NPP1 proteins are secreted. The results allow to predict the secretory destination of both GIP and NPP1 proteins and confirm RNAi as a potential alternative biological tool in the control and management of P. cinnamomi. Keywords:
Resumo:
Processed meat products are of worldwide importance and, because of their intrinsic factors as well as the processing methods, they are highly prone to fungal and mycotoxin contamination. Ochratoxin A (OTA) is the most significant mycotoxin in processed meat products. Penicillium nordicum is considered to be responsible for OTA contamination of meat products, as it is highly adapted to salt and protein-rich matrices and is moderately psycrotrophic. However, another OTA-producing fungus, Aspergillus westerdijkiae, adapted to carbon-rich matrices such as cereals and coffee beans, has been recently associated with high levels of OTA in meat products. Several Lactic Acid Bacteria (LAB) and yeasts have been tested as biocontrol agents against P. nordicum growth and OTA production in meat products, with promising results, but none of the studies have considered A. westerdijkiae. The aim of this work was to evaluate in vitro the effect of a commercial starter culture used in sausage fermentation and four yeasts isolated from dry-cured sausage on these two OTA-producing fungi, both in terms of fungal growth and of OTA production, using different meat-based culture media as model systems. The mechanisms underlying the observed effect were also studied. For this purpose, C. krusei, C. zeylanoides, R. mucilaginosa, R. glutinis, a mix of these yeasts and the starter culture were co-inoculated with P. nordicum and A. westerdijkiae in industrial sausage, traditional sausage, and ham-based media, under conditions of water activity, salt concentration and temperature that mimic real conditions at beginning and end of sausage curing process. Fungal growth was determined by measuring colony diameter, and OTA production was quantified by HPLC-FLD after extraction with methanol. Yeasts where found to inhibit significantly the growth of both fungi. P. nordicum was unable to produce detectable OTA in both sausage-based media under any condition. In ham, yeasts reduced OTA production, while the starter culture significantly increased it. Unexpectedly, OTA production by A. westerdijkiae was significantly stimulated in all media tested by all microorganisms. Matrix has a significant effect on OTA production by P. nordicum, but not by A. westerdijkiae, for which only temperature showed to have effect. By testing the mechanisms of action by which starter culture and C. zeylanoides influenced fungal responses, we were able to determine that direct contact and simultaneous growth of test organisms were the mechanisms more significantly involved in the responses. In conclusion, ochratoxigenic fungi do not all respond to antagonistic microorganisms in the same way. The use of biocontrol agents with the intent of reducing fungal growth and mycotoxin production by one fungus can have unexpected effects on others, thus leading to unforeseen safety problems. Further experiments are recommended to properly understand the reasons behind the different effects of microorganisms, to ensure their safe as biocontrol agents.
Resumo:
Mushrooms are rich in several bioactive metabolites among them are phenolic compounds, terpenoids, polysaccharides, lectins, and steroids including mycosterols, namely ergosterol [1]. Ethanolic extracts prepared by maceration of several mushroom species have been recently described as having antiinflammatory properties [2]. In the present work, ethanolic extracts of Agaricus bisporus L., Lentinus edodes (Berk.) Pegler and Pleurotus ostreatus (Jacq. ex Fr.) P.Kumm., purchased from a local supermarket in the Northeast of Portugal, were obtained by Soxhlet and chemically characterized in terms of ergosterol content by HPLC-UV. The antioxidant properties of these extracts were evaluated through DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (RSA), reducing power (RP), p. carotene bleaching inhibition (CBI) and lipid peroxidation inhibition in TBARS (thiobarbituric acid reactive substances) assay (LPI); the antioxidant activity of ergosterol was also evaluated by the DPPH assay. The anti-inflammatory activity of the same extracts and ergosterol was evaluated in LPS (lipopolysaccharide) stimulated RAW 264.7 macrophages, through the inhibition of NO production. A. bisporus revealed the highest content in ergosterol (44.8 ± 0.4 mg/ g extract) followed by P. ostreatus (34 ± 3 mg/ g extract) and finally L. edodes (8.9 ± 0.1 mg/ g extract). A. bisporus showed the highest RSA, RP and CBI (EC50 values= 7.0 ± 0.8, 2.3 ± 0.1 and 1.4 ± 0.1 mg/mL, respectively), while L. edodes presented the highest LPI (2.5 ± 0.1 mg/mL ); ergosterol revealed higher RSA (0.46±0. 0 I mg/mL) than the extracts. Concerning the anti-inflammatory potential, the most efficient species was L. edodes (lC50 value = 164 ± 16 J.lg/mL), followed by A. bisporus (185 ± 16 J.lg/mL) and finally P. ostreatus (290 ± 10 J.lg/mL). However, ergosterol presented lower activity (338 ± 23 J.lg/mL) due to its low solubility in the culture medium. The higher antioxidant properties displayed by A. bisporus can be related with its higher ergosterol content, while in the anti-inflammatory activity this relation cannot be established also due to the low solubility of ergosterol in the cells culture medium, decreasing the ergosterol availability. More studies are being conducted regarding the ergosterol solubility. Several compounds have been implicated in the bioactivity of mushrooms and in this study we have found that ergosterol can give an important contribution.