19 resultados para Mushrooms.

em Instituto Politécnico de Bragança


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mushrooms are an important source of natural compounds with acknowledged bioactivity. Pleurotus eryngii (DC.) Quél., in particular, is widely recognized for its organoleptic quality and favorable health effects, being commercially produced in great extent. On the other hand, Suillus bellinii (Inzenga) Watling is an ectomycorrhizal symbiont, whose main properties were only reported in a scarce number of publications. Some current trends point toward using the mycelia and the culture media as potential sources of bioactive compounds, in addition to the fruiting bodies. Accordingly, P. eryngii and S. bellinii were studied for their composition in phenolic acids and sterols, antioxidant capacity (scavenging DPPH radicals, reducing power, β-carotene bleaching inhibition and TBARS formation inhibition), anti-inflammatory effect (by down-regulating LPS-stimulated NO in RAW264.7 cells) and anti-proliferative activity (using MCF-7, NCI-H460, HeLa, HepG2 and PLP2 cell lines). Overall, S. bellinii mycelia showed higher contents of ergosterol and phenolic compounds (which were also detected in higher quantity in its fruiting body) and stronger antioxidant activity than P. eryngii. On the other hand, P. eryngii mycelia showed anti-inflammatory (absent in S. bellinii mycelia) and a cytotoxicity similar (sometimes superior) to its fruiting bodies, in opposition to S. bellinii, whose mycelia presented a decreased anti-proliferative activity. Furthermore, the assayed species showed differences in the growth rate and yielded biomass of their mycelia, which should also be considered in further applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mushrooms have the ability to promote apoptosis in tumor cell lines, but the mechanism of action is not quite well understood. Inhibition of the interaction between Bcl-2 and pro-apoptotic proteins could be an important step that leads to apoptosis. Therefore, the discovery of compounds with the ability to inhibit Bcl-2 is an ongoing research topic in drug discovery. In this study, we started by analyzing Bcl-2 experimental structures that are currently available in Protein Data Bank database. After analysis of the more relevant Bcl-2 structures, 4 were finally selected. An analysis of the best docking methodology was then performed using a cross-docking and re-docking approach while testing 2 docking softwares: AutoDock 4 and AutoDock Vina. Autodock4 provided the best docking results and was selected to perform a virtual screening study applied to a dataset of 40 Low Molecular Weight (LMW) compounds present in mushrooms, using the selected Bcl-2 structures as target. Results suggest that steroid are the more promising family, among the analyzed compounds, and may have the ability to interact with Bcl-2 and this way promoting tumor apoptosis. The steroids that presented lowest estimated binding energy (ΔG) were: Ganodermanondiol, Cerevisterol, Ganoderic Acid X and Lucidenic Lactone; with estimated ΔG values between -8,45 and -8,23 Kcal/mol. A detailed analysis of the docked conformation of these 4 top ranked LMW compounds was also performed and illustrates a plausible interaction between the 4 top raked steroids and Bcl-2, thus substantiating the accuracy of the predicted docked poses. Therefore, tumoral apoptosis promoted by mushroom might be related to Bcl-2 inhibition mediated by steroid family of compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mushrooms are known as a powerful source of bioactive compounds including antioxidants, inhibitors of human tumour cell lines growth, inducers of apoptosis and enhancers of immunity. Indeed, many pre-clinical studies have been conducted in human tumour cell lines and in some cases a number of compounds isolated from mushrooms have followed to clinical trials. The Northeast of Portugal is one of the European regions with higher wild mushrooms diversity. However, to our knowledge, no studies had been conducted so far to verify their bioactivities. The main aim of this work was the evaluation of the bioactive properties (antioxidant properties and growth inhibitory potential on human tumour cell lines) of wild edible mushrooms collected in the Northeast of Portugal. Once properly identified, methanolic, ethanolic and boiling water extracts were prepared from thirty eight wild mushroom species collected in that region. Chemical characterization was obtained by high performance liquid chromatography (HPLC) coupled to a photodiode array detector (DAD) or to a refraction index detector (RI). Antioxidant activity assays were carried out in those extracts, including evaluation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging capacity, reducing power and inhibition of β-carotene bleaching. Extract-induced cell growth inhibition was assessed with the sulforhodamine B assay in four human tumour cell lines (NCI-H460 - lung cancer, MCF-7 -breast cancer, HCT-15 -colon cancer and AGS - gastric cancer). The effects on cell cycle profile and apoptosis were evaluated by flow cytometry and the effect on the expression levels of proteins related to cell cycle and apoptosis was further investigated by Western blotting. Three wild edible mushroom species revealed growth inhibitory activity in the studied human tumour cell lines: Clitocybe alexandri ethanolic extract, Lepista inversa methanolic extract and Suillus collinitus methanolic extract. C. alexandri ethanolic extract induced an S-phase cell cycle arrest and increased the percentage of apoptotic cells, in the NCI-H460 cell line. The analysed mushroom species also provided interesting antioxidant potential, mainly the boiling water extract of L. inversa which showed the highest DPPH radical scavenging activity, reducing power and β-carotene bleaching inhibition. S. collinitus methanolic extract induced a slight increase in the number of cells in G1, with a concomitant decrease in the percentage of cells in the S phase of the cell cycle and an increase in the percentage of apoptotic cells, in the MCF-7 cell line. The combined use of the S. collinitus methanolic extract and etoposide caused a greater decrease in the percentage of cell growth, when compared to either of them used individually, indicating the potential benefit of this combination. The tested extracts were chemically characterized and protocatechuic, p-hydroxybenzoic, p-coumaric and cinnamic acids were the main compounds identified on the phenolic (methanolic and ethanolic) extracts, while mannitol, trehalose and arabinose were the main sugars found in the polysaccharidic (boiling water) extracts after hydrolysis. The individual compounds identified in the extracts were submitted to a screening of tumour cells growth inhibitory activity, but only the phenolic acids and a related compound, cinnamic acid, presented activity. This compound was found to be the most potent one regarding cell growth inhibition in the NCI-H460 cell line. The effect of the individual and combined treatment with the identified compounds was also evaluated. Cinnamic and protochatequic acids caused a statistically significantly reduction in the number of viable cells. In addition, p-hydroxybenzoic acid did not show any significantly reduction in the viable cell number. Nevertheless, it was verified that the concomitant use of the three compounds provided the strongest decrease in the viable cell number, suggesting a possible concomitant effect of those compounds. Overall, the present work has contributed to further understand the bioactive potential of wild edible mushrooms from the Northeast of Portugal. This study allowed to identify some species with antioxidant or tumour cell growth inhibitory potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wild mushrooms have been extensively studied for their value as sources of high quality nutrients and of powerful physiologically bioactive compounds [1,2]. The present study was designed to evaluate the in vitro development of two wild edible mushroom species: Pleurotus eryngii (DC.) Quél. and Suillus belinii (Inzenga) Watling, by testing different solid (Potato Dextrose Agar medium –PDA and Melin-Norkans medium- MMN) and liquid culture media (Potato dextrose broth- PDB and Melin-Norkans medium- MMN). Each strain of mushroom produces a special type of mycelium and this range of characteristics varies in form, color and growth rate. S. bellinii presents a pigmented and rhizomorphic mycelia, whereas, P. eryngii has depigmented and cottony mycelia. The mycelium isolated and grown in PDA showed a faster radial growth compared to the mycelium isolated and grown in both solid and liquid incomplete MMN medium. P. eryngii exhibited a rapid growth and a higher mycelia biomass in both medium compared to S. belinii. Moreover, the obtained mycelia will be characterized in terms of well-recognized bioactive compounds namely, phenolic acids and mycosterols (mainly ergosterol), by using high performance liquid chromatography coupled to diode array and ultraviolet detectors, respectively. These compounds will be correlated to mycelia bioactivity: i) antioxidant activity, evaluated through free radicals scavenging activity, reducing power and lipid peroxidation inhibition in vitro assays; ii) anti-inflammatory activity, assessed through nitric oxide production inhibition in murine macrophages (RAW 264.7 cell line); iii) cytotoxic activity, evaluated either in human tumor cell lines (MCF-7- breast adenocarcinoma, NCIH460- non-small cell lung cancer, HeLa- cervical carcinoma and HepG2- hepatocellular carcinoma) as also in a non-tumor porcine primary liver cells culture established in-house (PLP2). Overall, our expectation is that the bioactive formulations obtained by in vitro culture can be applied as nutraceuticals or incorporated in functional foods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mushrooms are rich in several bioactive metabolites among them are phenolic compounds, terpenoids, polysaccharides, lectins, and steroids including mycosterols, namely ergosterol [1]. Ethanolic extracts prepared by maceration of several mushroom species have been recently described as having antiinflammatory properties [2]. In the present work, ethanolic extracts of Agaricus bisporus L., Lentinus edodes (Berk.) Pegler and Pleurotus ostreatus (Jacq. ex Fr.) P.Kumm., purchased from a local supermarket in the Northeast of Portugal, were obtained by Soxhlet and chemically characterized in terms of ergosterol content by HPLC-UV. The antioxidant properties of these extracts were evaluated through DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (RSA), reducing power (RP), p. carotene bleaching inhibition (CBI) and lipid peroxidation inhibition in TBARS (thiobarbituric acid reactive substances) assay (LPI); the antioxidant activity of ergosterol was also evaluated by the DPPH assay. The anti-inflammatory activity of the same extracts and ergosterol was evaluated in LPS (lipopolysaccharide) stimulated RAW 264.7 macrophages, through the inhibition of NO production. A. bisporus revealed the highest content in ergosterol (44.8 ± 0.4 mg/ g extract) followed by P. ostreatus (34 ± 3 mg/ g extract) and finally L. edodes (8.9 ± 0.1 mg/ g extract). A. bisporus showed the highest RSA, RP and CBI (EC50 values= 7.0 ± 0.8, 2.3 ± 0.1 and 1.4 ± 0.1 mg/mL, respectively), while L. edodes presented the highest LPI (2.5 ± 0.1 mg/mL ); ergosterol revealed higher RSA (0.46±0. 0 I mg/mL) than the extracts. Concerning the anti-inflammatory potential, the most efficient species was L. edodes (lC50 value = 164 ± 16 J.lg/mL), followed by A. bisporus (185 ± 16 J.lg/mL) and finally P. ostreatus (290 ± 10 J.lg/mL). However, ergosterol presented lower activity (338 ± 23 J.lg/mL) due to its low solubility in the culture medium. The higher antioxidant properties displayed by A. bisporus can be related with its higher ergosterol content, while in the anti-inflammatory activity this relation cannot be established also due to the low solubility of ergosterol in the cells culture medium, decreasing the ergosterol availability. More studies are being conducted regarding the ergosterol solubility. Several compounds have been implicated in the bioactivity of mushrooms and in this study we have found that ergosterol can give an important contribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boletus edulis Bull: Fr. is an edible mushroom quite appreciated for its organoleptic and nutritional properties. However, the seasonality and perishability cause some difficulties in its distribution and marketing in fresh form; losses associated with this type of food during marketing can reach 40% [1]. Irradiation is recognized as a safe and effective method for food preservation, being used worldwide to increase shelf life of fresh and dehydrated products (e.g. fruits, vegetables and spices) [2]. In particular, gamma irradiation has already been applied to cultivated mushrooms (especially Agaricus, Lentinula and Pleurotus Genus) and proved to be an interesting conservation technology [3]. However, the studies with added-value wild species are scarce. In this work, the effects of gamma irradiation on chemical and antioxidant properties of wild B. edulis, were evaluated. Fruiting bodies were obtained in Trás-os-Montes, in the Northeast of Portugal, in November 2012. The irradiation was performed in experimental equipment with 60Co sources at 1 and 2 kGy. All the results were compared with nonirradiated samples (control). Macronutrients and energy value were determined following official procedures of food analysis; fatty acids were analyzed by gas-chromatography coupled to flame ionization detection (GC-FID), while sugars and tocopherols were determined by high performance liquid chromatography (HPLC) coupled to refraction index (RI) and fluorescence detectors, respectively. Antioxidant activity was evaluated in the methanolic extracts by in vitro assays measuring DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity, reducing power, inhibition of β- carotene bleaching and inhibition of lipid peroxidation using thiobarbituric acid reactive substances (TBARS) assay. Total phenolics were also determined by the Folin-Ciocalteu assay. The nutritional profiles were not affected in high extension. Fatty acids and sugars were slightly affected, decreasing with the increasing doses. The performed assays for antioxidant activity, indicate that irradiated samples tended to have lower scavenging activity and reducing power, but higher lipid peroxidation inhibition. Despite the detected differences in individual compounds, the results of nutritional parameters, the most relevant in terms of mushroom acceptability by consumers, were less affected, indicating an interesting potential of gamma-irradiation to be used as an effective conservation technology for the studied mushrooms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irradiation is recognized by international organizations as a conservation technology, and its application to wild mushrooms has been tested in some species. Our research group evaluated the effectiveness of gamma irradiation to conserve different samples of highly appreciated species, particularly, Lactarius deliciosus, Macrolepiota procera, Boletus edulis and Hydnum repandum. From those results and considering also international recommendations on this subject, the 2 kGy dose was chosen for further studies. Therefore, the application of gamma irradiation at 2 kGy dose was extended to Boletus pinophilus Pilát & Dermek and Clitocybe subconnexa Murrill to validate the proposed technology. Considering the obtained results, some of the analysed chemical parameters (specially sugars and fatty acids), as well as the antioxidant activity, showed significant changes after irradiation treatment, particularly in B. pinophillus, probably due to its higher water content. Nevertheless, the obtained differences did not seem to be sufficient to change the organoleptic characteristics of these mushrooms. Furthermore, the antioxidant activity was generally higher in irradiated samples. In conclusion, the detected chemical changes might be considered as acceptable, when considering the high advantages of gamma irradiation at decontamination and/or disinfestation level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The B cell CLL/lymphoma-2 (Bcl-2) family is functionally classified as either anti-apoptotic or pro-apoptotic, and the regulation of its interactions dictates survival or commitment to apoptosis. Bcl-2 family is also implicated in a wide range of diseases. In some types of cancers, including lymphomas and epithelial cancers, protein overexpression of anti-apoptotic Bcl-2 family, such as the Bcl-2 protein is indicative of cancer in an advanced stage, with a poor prognosis and resistant to chemotherapy [1]. Several reports indicate that mushrooms have the ability to promote apoptosis in tumour cell lines, but the mechanism of action is not fully understood. Inhibition of the interaction between Bcl-2 (anti-apoptotic protein) and proapoptotic proteins could be an important step in the mechanism of mushroom induced apoptosis. Therefore, the discovery of compounds with the capacity to inhibit Bcl-2 is an ongoing research topic on cancer therapy. In this work, docking studies were performed using a dataset of 40 low molecular weight (LMW) compounds present in mushrooms. The docking software AutoDock 4 was used and docking studies were performed using 5 selected Bcl-2 crystal structures as targets. Compounds with the lowest predicted binding energy (predΔG) are expected to be the more potent inhibitors. Among the tested compounds, steroids presented the lowest predΔG with several exhibiting values below -9 kcal/mol. The results are corroborated by several reports that state that steroids induce apoptosis in several tumor cells. It is thus feasible that they might act by preventing Bcl-2 from forming complexes with the respective proapoptotic protein interaction partners, namely Bak, Bax, and Bim. Moreover, previous studies on our research group demonstrated that 48 h treatment of MCF-7 cells (breast carcinoma) with Suillus collinitus methanolic extract caused a decrease in Bcl-2, highlighting the antitumor potential of this mushroom species [2]. In conclusion, the process of apoptosis promoted by mushroom extracts may be related to the inhibition of Bcl-2 by the steroid derivatives herein studied. However, further studies are needed to confirm this hypothesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The short shelf life of mushrooms is a barrier for their distribution and, therefore, there has been extensive research to find technologies that ensure the preservation of mushrooms, maintaining their organoleptic and nutritional properties (1]. Irradiation has proved its technological feasibility to be safely used in the reduction of food losses, being recognized by international organizations as a valid conservation alternative in extending shelflife of many foods. The aim of the present work was to validate the use of 2 kGy dose of gamma radiation to maintain chemical composition of wild mushrooms. Boletus pinophilus Pihit & Dermek and Clitocybe subconnexa Murrill wild samples were obtained in Tnis-os-Montes; subsequently, the samples were divided in two groups: control (non-irradiated, 0 kGy) and irradiated (2 kGy). The irradiation of the samples was performed in a 6°Co experimental chamber. Moisture, protein, fat, carbohydrates and ash were determined following the standard procedures [2]. Free sugars and tocopherols were determined by high performance liquid chromatography coupled to a refraction index detector (HPLC-RI) and a fluorescence detector, respectively; fatty acids were determined by gas-liquid chromatography with flame ionization detection (GC-FID) [3]. The protein and ash content was preserved in both groups, although the sugars and tocopherols decreased in the irradiated samples. Sugars and fatty acids showed significant changes after irradiation treatment, particularly in B. pinophillus, nevertheless, the magnitude of the obtained differences did not seem to be sufficient to affect the chemical profiles of the assayed mushrooms. Overall, the detected chemical changes might be considered as allowable, in view of the high advantages offered by gamma irradiation at decontamination and/or disinfestation level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mushrooms are very perishable foods due to their high susceptibility to moisture loss, changes in color and texture, or microbiological spoilage. Drying is considered as the most appropriate method to prevent these alterations, but it has some limitations, such as shrinkage, enzymatic and non-enzymatic browning reactions, and oxidation of lipids and vitamins. Irradiation might effectively attenuate the undesirable changes caused by drying process, ensuring also higher shelf-life of mushrooms and their decontamination [I]. In the present work, the combined effects of electron-beam irradiation (at 0, 0.5, 1 and 6 kGy doses) and storage time (at 0, 6 and 12 months) were evaluated and compared. Macrolepiota procera (Scop.) Singer wild samples were obtained in Tnis-os-Montes, in the Northeast of Portugal, and dried at 30 •c in an oven. Subsequently, the samples were divided in four groups: control (non-irradiated, 0 kGy); sample 1 (0.5 kGy); sample 2 (1 kGy) and sample 3 (6 kGy). The irradiation was performed at the lNCTInstitute of Nuclear Chemistry and Technology (lNCT), in Warsaw, Poland. Moisture, protein, fat, carbohydrates and ash were determined following standard procedures. Free sugars and tocopherols were determined by high performance liquid chromatography coupled to a refraction index detector (HPLC-RI) and a fluorescence detector, respectively; fatty acids were determined by gas-liquid chromatography with flame ionization detection (GC-FID). Antioxidant activity was evaluated in the methanolic extracts by in vitro assays measuring DPPH (1,1-diphenyl-2- picrylhydrazyl) radical scavenging activity, reducing power, inhibition of ~-carotene bleaching and inhibition oflipid peroxidation using thiobarbituric acid reactive substances (TBARS) assay. Total phenolics were also determined by the Folin-Ciocalteu assay. All the parameters showed a decrease tendency with storage time. Trehalose and y-tocopherol were preserved with 1 kGy dose. Electron-beam irradiation did not impart additional changes to most of the chemical and antioxidant parameters of M. procera dried samples. This is a very promising result, since electron-beam irradiation might attenuate most unwanted changes caused by drying, maintaining its long-term effectiveness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is scientific evidence demonstrating the benefits of mushrooms ingestion due to their richness in bioactive compounds such as mycosterols, in particular ergosterol [I]. Agaricus bisporus L. is the most consumed mushroom worldwide presenting 90% of ergosterol in its sterol fraction [2]. Thus, it is an interesting matrix to obtain ergosterol, a molecule with a high commercial value. According to literature, ergosterol concentration can vary between 3 to 9 mg per g of dried mushroom. Nowadays, traditional methods such as maceration and Soxhlet extraction are being replaced by emerging methodologies such as ultrasound (UAE) and microwave assisted extraction (MAE) in order to decrease the used solvent amount, extraction time and, of course, increasing the extraction yield [2]. In the present work, A. bisporus was extracted varying several parameters relevant to UAE and MAE: UAE: solvent type (hexane and ethanol), ultrasound amplitude (50 - 100 %) and sonication time (5 min-15 min); MAE: solvent was fixed as ethanol, time (0-20 min), temperature (60-210 •c) and solid-liquid ratio (1-20 g!L). Moreover, in order to decrease the process complexity, the pertinence to apply a saponification step was evaluated. Response surface methodology was applied to generate mathematical models which allow maximizing and optimizing the response variables that influence the extraction of ergosterol. Concerning the UAE, ethanol proved to be the best solvent to achieve higher levels of ergosterol (671.5 ± 0.5 mg/100 g dw, at 75% amplitude for 15 min), once hexane was only able to extract 152.2 ± 0.2 mg/100 g dw, in the same conditions. Nevertheless, the hexane extract showed higher purity (11%) when compared with the ethanol counterpart ( 4% ). Furthermore, in the case of the ethanolic extract, the saponification step increased its purity to 21%, while for the hexane extract the purity was similar; in fact, hexane presents higher selectivity for the lipophilic compounds comparatively with ethanol. Regarding the MAE technique, the results showed that the optimal conditions (19 ± 3 min, 133 ± 12 •c and 1.6 ± 0.5 g!L) allowed higher ergosterol extraction levels (556 ± 26 mg/100 g dw). The values obtained with MAE are close to the ones obtained with conventional Soxhlet extraction (676 ± 3 mg/100 g dw) and UAE. Overall, UAE and MAE proved to he efficient technologies to maximize ergosterol extraction yields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antioxidant potential of mushrooms is mainly attributed to their composition in polysaccharides, phenolic compounds, tocopherols and some organic acids [1]. Phenolic compounds contribute directly to the antioxidative action and play an important role in stabilizing lipid peroxidation [2]; exhibit a wide range of bioactive properties such as anti-allergenic, anti-inflammatory and antimicrobial, which have been in part related to their antioxidant activity [3]. Tocopherols are important fatsoluble antioxidants, acting in the cellular membrane; due to their role as scavenger of free radicals protecting human cells against degenerative malfunctions [4]. Some organic acids are very common in natural matrices; malic acid contributes to a pleasantly sour taste and is often used as a food additive; citric acid is known due to its antibacterial and antioxidant properties and fumaric acid is important because of its antioxidant, anti-inflammatory, antimicrobial and acidifying properties [5]. The purpose of the present study was to analyze antioxidant and related compounds (phenolic compounds, tocopherols and organic acids) of Polyporus squamosus (Huds.) Fr. samples originated from two different origins (Portugal and Serbia). Specimens of P. squamosus were collected in Bragança (Northeast Portugal) and Jabučki rit (Northern Serbia) during April 2015 and 2012, respectively. Phenolic compounds, organic acids and tocopherols were determined by high performance liquid chromatograph (HPLC) coupled to a diode array detector (DAD), in the two first cases, and a fluorescence detector in the last one. With respect to phenolic and related compounds, p-hydroxybenzoic and cinnamic acids were identified in both samples; the first one predominates in the sample from Portugal, while cinnamic acid was more abundant in the sample from Serbia. Tocopherols (α-, β and γ-isoforms) were found in the sample from Serbia, but in the sample from Portugal, γ-tocopherol was not identified. This sample showed the highest total tocopherols content, and revealed the highest level of β-tocopherol; γ- tocopherol predominated in the sample from Serbia. Among organic acids, it was possible to quantify oxalic, malic and fumaric acids in both samples. Malic acid was found in higher amounts in the sample from Serbia. Overall, the present study shows that mushroom samples from different origins have dissimilar results, but are both rich in bioactive compounds, being a valuable source for the development of natural medicines and nutraceuticals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years the interest in naturally occurring compounds has been increasing worldwide. Indeed, many of the bioactive compounds currently used as medicines have been synthesized based on the structure of natural compounds [1]. In order to obtain bioactive fractions and subsequently isolated compounds derived from natural matrices, several procedures have been carried out. One of these is to separate and assess the concentration of the active compound(s) present in the samples, a step in which the chromatographic techniques stand out [2]. In the present work the mushroom Sui/Ius granulatus (L.) Roussel was chemically characterized by chromatographic techniques coupled to different detectors, in order to evaluate the presence of nutritional and/or bioactive molecules. Some hydrophilic compounds, namely free sugars, were identified by high performance liquid chromatography coupled to a refraction index detector (HPLC-RI), and organic and phenolic acids were assessed by HPLC coupled to a photodiode array detector (HPLC-PDA). Regarding lipophilic compounds, fatty acids weredetermined by gas chromatography with a flame ionization detector (GC-FID) and tocopherols by HPLC-fluorescence detection. Mannitol and trehalose were the main free sugars detected. Different organic acids were also identified (i.e. oxalic, quinic and fumaric acids), as well as phenolic acids (i.e. gallic and p-hydroxybenzoic acids) and the related compound cinnamic acid. Mono- and polyunsaturated fatty acids were the prevailing fatty acids and a-, ~- and ~-tocopherol were the isoforms of vitamin E detected in the samples. Since this species proved to be a source of biologically active compounds, the antioxidant and antimicrobial properties were evaluated. The antioxidant activity was measured through the reducing power, free radical's scavenging activity and lipid peroxidation inhibition of its methanolic extract, and the antimicrobial activity was also tested in Gram positive and Gram negative bacteria and iri different fungi. S. granulatus presented antioxidant properties in all the performed assays, and proved to inhibit the growth of different bacterial and fungal strains. This study is a first step for classifying S. granulatus as a functional food, highlighting the potential of mushrooms as a source of nutraceutical and biologically active compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays the rising cost of health care and pharmaceutical products, the increase in life expectancy as well as the demand for an improved quality of life, has led to an increased concern about food intake and an emergence of new concepts of nutrition [1]. Mushrooms have been pointed out as an excellent option to include in a healthy diet, due to their nutritional value [2] associated with their bioactive properties [3]. The current study presents the chemical profile of two edible species, Leccinum molle (Ban) Ban and Leccinum vulpinum Watling, harvested in the outskirts of Bragan9a (Northeastern Portugal), regarding their content in nutrients and nonnutrients. Individual profiles of sugars and fatty acids were obtained by HPLC-RI and GC-FID, respectively. Tocopherols were analysed by HPLC-fluorescence, and the non-nutrients (i.e., phenolic and other organic acids) by HPLC-PDA. The antioxidant activity of the methanolic extracts obtained from both species was assessed with different assays (e.g. reducing power, radical scavenging activity and lipid peroxidation inhibition) and their hepatotoxicity was evaluated in primary cell cultures obtained from porcine liver, PLP2. Generally, both Leccinum species revealed similar nutrient profiles, with low fat levels, fructose, mannitol and trehalose as the foremost free sugars, and higher percentages of mono- and polyunsaturated fatty acids in comparison with saturated fatty acids. The presence of bioactive compounds was also detected, namely phenolic (e.g., gallic, protocatechuic and p-hydroxybenzoic acids) and organic acids (e.g., citric and fumaric acids). Both species presented antioxidant properties, being L. vulpinum the species which showed the most promising results (higher contents of total phenolic acids and lower ECso values in all the performed assays). Neither of the extracts presented toxicity against the liver primary cells PLP2, up to maximal concentration tested (Giso > 400 μg/ml).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wild mushrooms are mainly collected during the rainy season and valued as a nutritious food and sources of natural medicines and nutraceuticals. The aim of this study was to determine the chemical composition and bioactive properties (antioxidant, antimicrobial and cytotoxicity) of Polyporus squamosus from two different origins, Portugal and Serbia. The sample from Portugal showed higher contents of as protein (17.14 g/100 g), fat (2.69 g/100 g), ash (3.15 g/100 g) and carbohydrates (77.02 g/100 g); the same sample gave the highest antioxidant activity: highest reducing power, DPPH radical scavenging activity, and lipid peroxidation inhibition in both β-carotene/linoleate and TBARS assay. These results could be related to its higher content in total tocopherols (1968.65 μg/100 g) and phenolic compounds (1.29 mg/100 g). Both extracts exhibited antibacterial activity against all the tested organisms. The samples from Serbia gave higher overall antibacterial activity and showed excellent antibiofilm activity (88.30 %). Overall, P. squamosus methanolic extracts possessed antioxidant, antimicrobial, antibiofilm and anti-quorum sensing activity, and without toxicity for liver cells. This investigation highlights alternatives to be explored for the treatment of bacterial infections, in particular against Pseudomonas aeruginosa. This study provides important results for the chemical and bioactive properties, especially antimicrobial activity of the mushroom P. squamosus. Moreover, to the authors’ knowledge this is the first report on sugars, organic acids, and individual phenolic compounds in P. squamosus.