4 resultados para Food plants

em Instituto Politécnico de Bragança


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants frequently suffer contaminations by toxigenic fungi, and their mycotoxins can be produced throughout growth, harvest, drying and storage periods. The objective of this work was to validate a method for detection of toxins in medicinal and aromatic plants, through a fast and highly sensitive method, optimizing the joint co-extraction of aflatoxins (AF: AFB1, AFB2, AFG1 and AFG2) and ochratoxin A (OTA) by using Aloysia citrodora P. (lemon verbena) as a case study. For optimization purposes, samples were spiked (n=3) with standard solutions of a mix of the four AFs and OTA at 10 ng/g for AFB1, AFG1 and OTA, and at 6 ng/g of AFB2 and AFG2. Several extraction procedures were tested: i) ultrasound-assisted extraction in sodium chloride and methanol/water (80:20, v/v) [(OTA+AFs)1]; ii) maceration in methanol/1% NaHCO3 (70:30, v/v) [(OTA+AFs)2]; iii) maceration in methanol/1% NaHCO3 (70:30, v/v) (OTA1); and iv) maceration in sodium chloride and methanol/water (80:20, v/v) (AF1). AF and OTA were purified using the mycotoxin-specific immunoaffinity columns AflaTest WB and OchraTest WB (VICAM), respectively. Separation was performed with a Merck Chromolith Performance C18 column (100 x 4.6 mm) by reverse-phase HPLC coupled to a fluorescence detector (FLD) and a photochemical derivatization system (for AF). The recoveries obtained from the spiked samples showed that the single-extraction methods (OTA1 and AF1) performed better than co-extraction methods. For in-house validation of the selected methods OTA1 and AF1, recovery and precision were determined (n=6). The recovery of OTA for method OTA1 was 81%, and intermediate precision (RSDint) was 1.1%. The recoveries of AFB1, AFB2, AFG1 and AFG2 ranged from 64% to 110% for method AF1, with RSDint lower than 5%. Methods OTA1 and AF1 showed precision and recoveries within the legislated values and were found to be suitable for the extraction of OTA and AF for the matrix under study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Irradiation is being progressively considered as a versatile and effective conservation technique [1]. Based on this premise, our research group has been investigating the effects of different irradiation conditions in several food matrices. Aromatic plants are among the food products that require suitable conservation technologies to expand their use [2]. The effects of irradiation on the four species (Aloysia citrodora, Melissa officinalis, Melittis melissophyllum and Mentha piperita) studied herein were previously evaluated. In the present study, the same species were treated with different doses of electron-beam irradiation (0, 1 and 10 kGy) and several parameters were evaluated. The individual sugars profile was determined by HPLCRI, fatty acids by GC-FID, organic acids by HPLC-PDA and tocopherols by HPLCfluorescence. In general, the evaluated parameters remained practically unchanged, regardless of plant species or the irradiation dose. Regarding the profile of sugars, the major change was a decrease in the content of disaccharides. The most notable variations in organic acids were observed in plant species with the highest content in these molecules, especially the decrease observed in the samples of M. officinalis and M. melissophyllum. Among the tocopherols, the α and β isoforms were more susceptible to radiation, while the application of 1 kGy tended to increase the levels of tocopherols in Aloysia citrodora, while 10 kGy had the same effect on M. melissophyllum. M. piperita sample showed the highest levels of tocopherols, regardless of the dose applied. Finally, with regard to the fatty acids content, the irradiated samples showed higher percentages of monounsaturated fatty acids than the control samples. In general, analyzing the results taking into account the effects described, it can be concluded that the application of irradiation with electron beam at doses 1 and 10 kGy is an effective way to retain biomolecules profile of the studied species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vitamins and mineral elements are among the most important phytochemicals due to their important role in the maintenance of human health. Despite these components had already been studied in different plant species, their full characterization in several wild species is still scarce. In addition, the knowledge regarding the in vivo effects of phytochemicals, particularly their bioaccessibility, is still scarce. Accordingly, a membrane dialysis process was used to simulate gastrointestinal conditions in order to assess the potential bioaccessibility of mineral elements in different preparations of Achillea millefolium (yarrow), Laurus nobilis (laurel) and Taraxacum sect. Ruderalia (dandelion). The retention/passage dynamics was evaluated using a cellulose membrane with 34 mm pore. Dandelion showed the highest levels of all studied mineral elements (except zinc) independently of the used formulations (dried plant or infusion), but yarrow was the only species yielding minerals after the dialysis step, either in dried form, or as infusion. In fact, the ability of each evaluated element to cross the dialysis membrane showed significant differences, being also highly dependent on the plant species. Regarding the potential use of these plants as complementary vitamin B9 sources, the detected values were much lower in the infusions, most likely due to the thermolability effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The liver is one of the most important organs of human body, being involved in several vital functions and regulation of physiological processes. Given its pivotal role in the excretion of waste metabolites and drugs detoxification, the liver is often subjected to oxidative stress that leads to lipid peroxidation and severe cellular damage. The conventional treatments of liver diseases such as cirrhosis, fatty liver and chronic hepatitis are frequently inadequate due to side effects caused by hepatotoxic chemical drugs. To overcome this problematic paradox, medicinal plants, owing to their natural richness in phenolic compounds, have been intensively exploited concerning their extracts and fraction composition in order to find bioactive compounds that could be isolated and applied in the treatment of liver ailments. The present review aimed to collect the main results of recent studies carried out in this field and systematize the information for a better understanding of the hepatoprotective capacity of medicinal plants in in vitro and in vivo systems. Generally, the assessed plant extracts revealed good hepatoprotective properties, justifying the fractionation and further isolation of phenolic compounds from different parts of the plant. Twenty-five phenolic compounds, including flavonoids, lignan compounds, phenolic acids and other phenolic compounds, have been isolated and identified, and proved to be effective in the prevention and/or treatment of chemically induced liver damage. In this perspective, the use of medicinal plant extracts, fractions and phenolic compounds seems to be a promising strategy to avoid side effects caused by hepatotoxic chemicals.