2 resultados para Computational platforms
em Instituto Politécnico de Bragança
Resumo:
The general purpose of this work is to describe and analyse the financing phenomenon of crowdfunding and to investigate the relations among crowdfunders, project creators and crowdfunding websites. More specifically, it also intends to describe the profile differences between major crowdfunding platforms, such as Kickstarter and Indiegogo. The findings are supported by literature, gathered from different scientific research papers. In the empirical part, data about Kickstarter and Indiegogo was collected from their websites and also complemented with further data from other statistical websites. For finding out specific information, such as satisfaction of entrepreneurs from both platforms, a satisfaction survey was applied among 200 entrepreneurs from different countries. To identify the profile of users of the Kickstarter and of the Indiegogo platforms, a multivariate analysis was performed, using a Hierarchical Clusters Analysis for each platform under study. Descriptive analysis was used for exploring information about popularity of platforms, average cost and the most popular area of projects, profile of users and future opportunities of platforms. To assess differences between groups, association between variables, and answering to the research hypothesis, an inferential analysis it was applied. The results showed that the Kickstarter and Indiegogo are one of the most popular crowdfunding platforms. Both of them have thousands of users and they are generally satisfied. Each of them uses individual approach for crowdfunders. Despite this, they both could benefit from further improving their services. Furthermore, according the results it was possible to observe that there is a direct and positive relationship between the money needed for the projects and the money collected from the investors for the projects, per platform.
Resumo:
The solvation of cyano- (CN-) based ionic liquids (ILs) and their capacity to establish hydrogen bonds (H-bonds) with water was studied by means of experimental and computational approaches. Experimentally, water activity data were measured for aqueous solutions of ILs based on 1-butyl-3-methylimidazolium ([BMIM](+)) cation combined with one of the following anions: thiocyanate ([SCN](-)), dicyanamide ([DCA](-)), or tricyanomethanide ([TCM](-)), and of 1-ethyl-3-methylimidazolium tetracyanoborate ([EMIM][TCB]). From the latter data, water activity coefficients were estimated showing that [BMIM][SCN] and [BMIM][DCA], unlike [BMIM][TCM] and [EMIM][TCB], are able to establish favorable interactions with water. Computationally, the conductor like screening model for real solvents (COSMO-RS) was used to estimate the water activity coefficients which compare well with the experimental ones. From the COSMO-RS results, it is suggested that the polarity of each ion composing the ILs has a strong effect on the solvation phenomena. Furthermore, classical molecular dynamics (MD) simulations were performed for obtaining an atomic level picture of the local molecular neighborhood of the different species. From the experimental and computational data it is showed that increasing the number of CN groups in the ILs' anions does not enhance their ability to establish H-bonds with water but decreases their polarities, being [BMIM][DCA] and [BMIM][SCN] the ones presenting higher propensity to interact.