11 resultados para yields
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Originally from Asia, Dovyalis hebecarpa is a dark purple/red exotic berry now also produced in Brazil. However, no reports were found in the literature about phenolic extraction or characterisation of this berry. In this study we evaluate the extraction optimisation of anthocyanins and total phenolics in D. hebecarpa berries aiming at the development of a simple and mild analytical technique. Multivariate analysis was used to optimise the extraction variables (ethanol:water:acetone solvent proportions, times, and acid concentrations) at different levels. Acetone/water (20/80 v/v) gave the highest anthocyanin extraction yield, but pure water and different proportions of acetone/water or acetone/ethanol/water (with >50% of water) were also effective. Neither acid concentration nor time had a significant effect on extraction efficiency allowing to fix the recommended parameters at the lowest values tested (0.35% formic acid v/v, and 17.6 min). Under optimised conditions, extraction efficiencies were increased by 31.5% and 11% for anthocyanin and total phenolics, respectively as compared to traditional methods that use more solvent and time. Thus, the optimised methodology increased yields being less hazardous and time consuming than traditional methods. Finally, freeze-dried D. hebecarpa showed high content of target phytochemicals (319 mg/100g and 1,421 mg/100g of total anthocyanin and total phenolic content, respectively).
Resumo:
Twelve novel 8-hydroxyquinoline derivatives were synthesized with good yields by performing copper-catalyzed Huisgen 1,3-dipolar cycloaddition (click reaction) between an 8-O-alkylated-quinoline containing a terminal alkyne and various aromatic or protected sugar azides. These compounds were evaluated in vitro for their antiproliferative activity on various cancer cell types. Protected sugar derivative 16 was the most active compound in the series, exhibiting potent antiproliferative activity and high selectivity toward ovarian cancer cells (OVCAR-03, GI50 < 0.25 μg mL(-1)); this derivative was more active than the reference drug doxorubicin (OVCAR-03, GI50 = 0.43 μg mL(-1)). In structure-activity relationship (SAR) studies, the physico-chemical parameters of the compounds were evaluated and docking calculations were performed for the α-glucosidase active site to predict the possible mechanism of action of this series of compounds.
Resumo:
We report the STAR measurements of dielectron (e(+)e(-)) production at midrapidity (|y(ee)|<1) in Au+Au collisions at √[s(NN)]=200 GeV. The measurements are evaluated in different invariant mass regions with a focus on 0.30-0.76 (ρ-like), 0.76-0.80 (ω-like), and 0.98-1.05 (ϕ-like) GeV/c(2). The spectrum in the ω-like and ϕ-like regions can be well described by the hadronic cocktail simulation. In the ρ-like region, however, the vacuum ρ spectral function cannot describe the shape of the dielectron excess. In this range, an enhancement of 1.77±0.11(stat)±0.24(syst)±0.33(cocktail) is determined with respect to the hadronic cocktail simulation that excludes the ρ meson. The excess yield in the ρ-like region increases with the number of collision participants faster than the ω and ϕ yields. Theoretical models with broadened ρ contributions through interactions with constituents in the hot QCD medium provide a consistent description of the dilepton mass spectra for the measurement presented here and the earlier data at the Super Proton Synchrotron energies.
Resumo:
Extraction processes are largely used in many chemical, biotechnological and pharmaceutical industries for recovery of bioactive compounds from medicinal plants. To replace the conventional extraction techniques, new techniques as high-pressure extraction processes that use environment friendly solvents have been developed. However, these techniques, sometimes, are associated with low extraction rate. The ultrasound can be effectively used to improve the extraction rate by the increasing the mass transfer and possible rupture of cell wall due the formation of microcavities leading to higher product yields with reduced processing time and solvent consumption. This review presents a brief survey about the mechanism and aspects that affecting the ultrasound assisted extraction focusing on the use of ultrasound irradiation for high-pressure extraction processes intensification.
Resumo:
A new enantioselective Heck-Matsuda desymmetrization reaction was accomplished by using 3-cyclopentenol to produce chiral five-membered 4-aryl cyclopentenol scaffolds in good yields and high ee's, together with some 3-aryl-cyclopentanones as minor products. Mechanistically, the hydroxyl group of 3-cyclopentenol acts as a directing group and is responsible for the cis- arrangement in the formation of the 4-aryl-cyclopentenols.
Resumo:
We describe herein a general method for the controlled Heck arylation of allylated malonates. Both electron-rich and electron-poor aryldiazonium salts were readily employed as the aryl-transfer agents in good yields and in high chemo-, regio-, and stereoselectivity without formation of decarboxylated byproducts. Reaction monitoring via ESI-MS was used to support the formation of chelated Pd species through the catalytic cycle. Additionally, some Heck adducts were successfully used in the total synthesis of pharmacologically active γ-lactones.
Resumo:
We report the first measurement of charmed-hadron (D(0)) production via the hadronic decay channel (D(0) → K(-) + π(+)) in Au+Au collisions at sqrt[s(NN)] = 200 GeV with the STAR experiment. The charm production cross section per nucleon-nucleon collision at midrapidity scales with the number of binary collisions, N(bin), from p+p to central Au+Au collisions. The D(0) meson yields in central Au + Au collisions are strongly suppressed compared to those in p+p scaled by N(bin), for transverse momenta p(T) > 3 GeV/c, demonstrating significant energy loss of charm quarks in the hot and dense medium. An enhancement at intermediate p(T) is also observed. Model calculations including strong charm-medium interactions and coalescence hadronization describe our measurements.
Resumo:
Monte Carlo track structures (MCTS) simulations have been recognized as useful tools for radiobiological modeling. However, the authors noticed several issues regarding the consistency of reported data. Therefore, in this work, they analyze the impact of various user defined parameters on simulated direct DNA damage yields. In addition, they draw attention to discrepancies in published literature in DNA strand break (SB) yields and selected methodologies. The MCTS code Geant4-DNA was used to compare radial dose profiles in a nanometer-scale region of interest (ROI) for photon sources of varying sizes and energies. Then, electron tracks of 0.28 keV-220 keV were superimposed on a geometric DNA model composed of 2.7 × 10(6) nucleosomes, and SBs were simulated according to four definitions based on energy deposits or energy transfers in DNA strand targets compared to a threshold energy ETH. The SB frequencies and complexities in nucleosomes as a function of incident electron energies were obtained. SBs were classified into higher order clusters such as single and double strand breaks (SSBs and DSBs) based on inter-SB distances and on the number of affected strands. Comparisons of different nonuniform dose distributions lacking charged particle equilibrium may lead to erroneous conclusions regarding the effect of energy on relative biological effectiveness. The energy transfer-based SB definitions give similar SB yields as the one based on energy deposit when ETH ≈ 10.79 eV, but deviate significantly for higher ETH values. Between 30 and 40 nucleosomes/Gy show at least one SB in the ROI. The number of nucleosomes that present a complex damage pattern of more than 2 SBs and the degree of complexity of the damage in these nucleosomes diminish as the incident electron energy increases. DNA damage classification into SSB and DSB is highly dependent on the definitions of these higher order structures and their implementations. The authors' show that, for the four studied models, different yields are expected by up to 54% for SSBs and by up to 32% for DSBs, as a function of the incident electrons energy and of the models being compared. MCTS simulations allow to compare direct DNA damage types and complexities induced by ionizing radiation. However, simulation results depend to a large degree on user-defined parameters, definitions, and algorithms such as: DNA model, dose distribution, SB definition, and the DNA damage clustering algorithm. These interdependencies should be well controlled during the simulations and explicitly reported when comparing results to experiments or calculations.
Resumo:
In this work, we discuss the use of multi-way principal component analysis combined with comprehensive two-dimensional gas chromatography to study the volatile metabolites of the saprophytic fungus Memnoniella sp. isolated in vivo by headspace solid-phase microextraction. This fungus has been identified as having the ability to induce plant resistance against pathogens, possibly through its volatile metabolites. Adequate culture media was inoculated, and its headspace was then sampled with a solid-phase microextraction fiber and chromatographed every 24 h over seven days. The raw chromatogram processing using multi-way principal component analysis allowed the determination of the inoculation period, during which the concentration of volatile metabolites was maximized, as well as the discrimination of the appropriate peaks from the complex culture media background. Several volatile metabolites not previously described in the literature on biocontrol fungi were observed, as well as sesquiterpenes and aliphatic alcohols. These results stress that, due to the complexity of multidimensional chromatographic data, multivariate tools might be mandatory even for apparently trivial tasks, such as the determination of the temporal profile of metabolite production and extinction. However, when compared with conventional gas chromatography, the complex data processing yields a considerable improvement in the information obtained from the samples. This article is protected by copyright. All rights reserved.
Resumo:
Glass-ceramics are prepared by controlled separation of crystal phases in glasses, leading to uniform and dense grain structures. On the other hand, chemical leaching of soluble crystal phases yields porous glass-ceramics with important applications. Here, glass/ceramic interfaces of niobo-, vanado- and titano-phosphate glasses were studied by micro-Raman spectroscopy, whose spatial resolution revealed the multiphase structures. Phase-separation mechanisms were also determined by this technique, revealing that interface composition remained unchanged as the crystallization front advanced for niobo- and vanadophosphate glasses (interface-controlled crystallization). For titanophosphate glasses, phase composition changed continuously with time up to the equilibrium composition, indicating a spinodal-type phase separation.
Resumo:
FISH has been used as a complement to classical cytogenetics in the detection of mosaicism in sex chromosome anomalies. The aim of this study is to describe three cases in which the final diagnosis could only be achieved by FISH. Case 1 was an 8-year-old 46,XY girl with normal female genitalia referred to our service because of short stature. FISH analysis of lymphocytes with probes for the X and Y centromeres identified a 45,X/46,X,idic(Y) constitution, and established the diagnosis of Turner syndrome. Case 2 was a 21-month-old 46,XY boy with genital ambiguity (penile hypospadias, right testis, and left streak gonad). FISH analysis of lymphocytes and buccal smear identified a 45,X/46,XY karyotype, leading to diagnosis of mixed gonadal dysgenesis. Case 3 was a 47,XYY 19-year-old boy with delayed neuromotor development, learning disabilities, psychological problems, tall stature, small testes, elevated gonadotropins, and azoospermia. FISH analysis of lymphocytes and buccal smear identified a 47,XYY/48,XXYY constitution. Cases 1 and 2 illustrate the phenotypic variability of the 45,X/46,XY mosaicism, and the importance of detection of the 45,X cell line for proper management and follow-up. In case 3, abnormal gonadal function could be explained by the 48,XXYY cell line. The use of FISH in clinical practice is particularly relevant when classical cytogenetic analysis yields normal or uncertain results in patients with features of sex chromosome aneuploidy. Arq Bras Endocrinol Metab. 2012;56(8):545-51