3 resultados para thermostable vaccine
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
The efficacy of the human papillomavirus type 16 (HPV-16)/HPV-18 AS04-adjuvanted vaccine against cervical infections with HPV in the Papilloma Trial against Cancer in Young Adults (PATRICIA) was evaluated using a combination of the broad-spectrum L1-based SPF10 PCR-DNA enzyme immunoassay (DEIA)/line probe assay (LiPA25) system with type-specific PCRs for HPV-16 and -18. Broad-spectrum PCR assays may underestimate the presence of HPV genotypes present at relatively low concentrations in multiple infections, due to competition between genotypes. Therefore, samples were retrospectively reanalyzed using a testing algorithm incorporating the SPF10 PCR-DEIA/LiPA25 plus a novel E6-based multiplex type-specific PCR and reverse hybridization assay (MPTS12 RHA), which permits detection of a panel of nine oncogenic HPV genotypes (types 16, 18, 31, 33, 35, 45, 52, 58, and 59). For the vaccine against HPV types 16 and 18, there was no major impact on estimates of vaccine efficacy (VE) for incident or 6-month or 12-month persistent infections when the MPTS12 RHA was included in the testing algorithm versus estimates with the protocol-specified algorithm. However, the alternative testing algorithm showed greater sensitivity than the protocol-specified algorithm for detection of some nonvaccine oncogenic HPV types. More cases were gained in the control group than in the vaccine group, leading to higher point estimates of VE for 6-month and 12-month persistent infections for the nonvaccine oncogenic types included in the MPTS12 RHA assay (types 31, 33, 35, 45, 52, 58, and 59). This post hoc analysis indicates that the per-protocol testing algorithm used in PATRICIA underestimated the VE against some nonvaccine oncogenic HPV types and that the choice of the HPV DNA testing methodology is important for the evaluation of VE in clinical trials. (This study has been registered at ClinicalTrials.gov under registration no. NCT00122681.).
Resumo:
We characterized the functional consequences of intravesical bacillus Calmette-Guérin on the molecular mechanism of the AKT/mTOR signaling pathway in nonmuscle invasive bladder cancer. To our knowledge this has not been reported previously. At age 7 weeks female Fischer 344 rats received 1.5 mg/kg MNU intravesically every other week for 6 weeks. They were randomized at 10 per group to MNU (0.2 ml vehicle), bacillus Calmette-Guérin (10(6) cfu Connaught strain), rapamycin (15 μg/ml) and bacillus Calmette-Guérin plus simultaneous rapamycin, each intravesically for 6 weeks. At week 15 the bladders were collected for histopathology, immunohistochemistry and immunoblot to determine p-AKT, Rictor, Raptor, p-4E-BP1, p-p70S6K1, p-AMPK-α, p-mTOR and p-p53. Papillary carcinoma (pTa) and high grade intraepithelial neoplasia (pTis) predominated in the MNU group while normal urothelium, papillary and flat hyperplasia were more common in treated groups. Nonmuscle invasive bladder cancer treated with bacillus Calmette-Guérin showed suppression of p70S6K1 but not 4E-BP1 phosphorylation. This suggests that 4E-BP1 is regulated differently than p70S6K1, escaping the bacillus Calmette-Guérin action that occurs in a mTOR independent manner. The association of bacillus Calmette-Guérin with rapamycin but not rapamycin monotherapy affected p70S6K1 and 4E-BP1 phosphorylation with no features of in situ carcinoma (pTis). The activation status of p70S6K1 and 4E-BP1 might be used to stratify patients who could benefit from targeting such molecular elements with multitarget/multidrug intravesical therapy. In the future 4E-BP1 might be a worthwhile new target for bacillus Calmette-Guérin refractory nonmuscle invasive bladder cancer.
Resumo:
Alginate microparticles were prepared by an emulsion method aiming oral controlled release of antigens to fish. The effects of emulsification temperature and impeller type on particle morphology, average diameter, and size distribution were evaluated. Microparticles contaning formalin-killed Flavobacterium columnare cells (a model antigen) were prepared and characterized regarding bacterial release and particle stability when exposed to Nile tilapia (Oreochromis niloticus) typical gastrointestinal conditions. This methodology allowed the production of microparticles containing up to 14.3 g/L of bacterin, stable at a pH range from 2.0 to 9.0 for 12 h and smaller than 35 μm.