7 resultados para temperature-based models
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
A miniaturised gas analyser is described and evaluated based on the use of a substrate-integrated hollow waveguide (iHWG) coupled to a microsized near-infrared spectrophotometer comprising a linear variable filter and an array of InGaAs detectors. This gas sensing system was applied to analyse surrogate samples of natural fuel gas containing methane, ethane, propane and butane, quantified by using multivariate regression models based on partial least square (PLS) algorithms and Savitzky-Golay 1(st) derivative data preprocessing. The external validation of the obtained models reveals root mean square errors of prediction of 0.37, 0.36, 0.67 and 0.37% (v/v), for methane, ethane, propane and butane, respectively. The developed sensing system provides particularly rapid response times upon composition changes of the gaseous sample (approximately 2 s) due the minute volume of the iHWG-based measurement cell. The sensing system developed in this study is fully portable with a hand-held sized analyser footprint, and thus ideally suited for field analysis. Last but not least, the obtained results corroborate the potential of NIR-iHWG analysers for monitoring the quality of natural gas and petrochemical gaseous products.
Resumo:
In acquired immunodeficiency syndrome (AIDS) studies it is quite common to observe viral load measurements collected irregularly over time. Moreover, these measurements can be subjected to some upper and/or lower detection limits depending on the quantification assays. A complication arises when these continuous repeated measures have a heavy-tailed behavior. For such data structures, we propose a robust structure for a censored linear model based on the multivariate Student's t-distribution. To compensate for the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is employed. An efficient expectation maximization type algorithm is developed for computing the maximum likelihood estimates, obtaining as a by-product the standard errors of the fixed effects and the log-likelihood function. The proposed algorithm uses closed-form expressions at the E-step that rely on formulas for the mean and variance of a truncated multivariate Student's t-distribution. The methodology is illustrated through an application to an Human Immunodeficiency Virus-AIDS (HIV-AIDS) study and several simulation studies.
Resumo:
Investigate factors associated with the onset of diabetes in women aged more than 49 years. Cross-sectional, population-based study using self-reports with 622 women. The dependent variable was the age of occurrence of diabetes using the life table method. Cox multiple regression models were adjusted to analyse the onset of diabetes according to predictor variables. Sociodemographic, clinical and behavioural factors were evaluated. Of the 622 women interviewed, 22.7% had diabetes. The mean age at onset was 56 years. The factors associated with the age of occurrence of diabetes were self-rated health (very good, good) (coefficient=-0.792; SE of the coefficient=0.215; p=0.0001), more than two individuals living in the household (coefficient=0.656, SE of the coefficient=0.223; p=0.003), and body mass index (BMI) (kg/m(2)) at 20-30 years of age (coefficient= 0.056, SE of the coefficient=0.023; p=0.014). Self-rated health considered good or very good was associated with a higher rate of survival without diabetes. Sharing a home with two or more other people and a weight increase at 20-30 years of age was associated with the onset of type 2 diabetes.
Resumo:
Often in biomedical research, we deal with continuous (clustered) proportion responses ranging between zero and one quantifying the disease status of the cluster units. Interestingly, the study population might also consist of relatively disease-free as well as highly diseased subjects, contributing to proportion values in the interval [0, 1]. Regression on a variety of parametric densities with support lying in (0, 1), such as beta regression, can assess important covariate effects. However, they are deemed inappropriate due to the presence of zeros and/or ones. To evade this, we introduce a class of general proportion density, and further augment the probabilities of zero and one to this general proportion density, controlling for the clustering. Our approach is Bayesian and presents a computationally convenient framework amenable to available freeware. Bayesian case-deletion influence diagnostics based on q-divergence measures are automatic from the Markov chain Monte Carlo output. The methodology is illustrated using both simulation studies and application to a real dataset from a clinical periodontology study.
Resumo:
El Niño South Oscillation (ENSO) is one climatic phenomenon related to the inter-annual variability of global meteorological patterns influencing sea surface temperature and rainfall variability. It influences human health indirectly through extreme temperature and moisture conditions that may accelerate the spread of some vector-borne viral diseases, like dengue fever (DF). This work examines the spatial distribution of association between ENSO and DF in the countries of the Americas during 1995-2004, which includes the 1997-1998 El Niño, one of the most important climatic events of 20(th) century. Data regarding the South Oscillation index (SOI), indicating El Niño-La Niña activity, were obtained from Australian Bureau of Meteorology. The annual DF incidence (AIy) by country was computed using Pan-American Health Association data. SOI and AIy values were standardised as deviations from the mean and plotted in bars-line graphics. The regression coefficient values between SOI and AIy (rSOI,AI) were calculated and spatially interpolated by an inverse distance weighted algorithm. The results indicate that among the five years registering high number of cases (1998, 2002, 2001, 2003 and 1997), four had El Niño activity. In the southern hemisphere, the annual spatial weighted mean centre of epidemics moved southward, from 6° 31' S in 1995 to 21° 12' S in 1999 and the rSOI,AI values were negative in Cuba, Belize, Guyana and Costa Rica, indicating a synchrony between higher DF incidence rates and a higher El Niño activity. The rSOI,AI map allows visualisation of a graded surface with higher values of ENSO-DF associations for Mexico, Central America, northern Caribbean islands and the extreme north-northwest of South America.
Resumo:
In this work, all publicly-accessible published findings on Alicyclobacillus acidoterrestris heat resistance in fruit beverages as affected by temperature and pH were compiled. Then, study characteristics (protocols, fruit and variety, °Brix, pH, temperature, heating medium, culture medium, inactivation method, strains, etc.) were extracted from the primary studies, and some of them incorporated to a meta-analysis mixed-effects linear model based on the basic Bigelow equation describing the heat resistance parameters of this bacterium. The model estimated mean D* values (time needed for one log reduction at a temperature of 95 °C and a pH of 3.5) of Alicyclobacillus in beverages of different fruits, two different concentration types, with and without bacteriocins, and with and without clarification. The zT (temperature change needed to cause one log reduction in D-values) estimated by the meta-analysis model were compared to those ('observed' zT values) reported in the primary studies, and in all cases they were within the confidence intervals of the model. The model was capable of predicting the heat resistance parameters of Alicyclobacillus in fruit beverages beyond the types available in the meta-analytical data. It is expected that the compilation of the thermal resistance of Alicyclobacillus in fruit beverages, carried out in this study, will be of utility to food quality managers in the determination or validation of the lethality of their current heat treatment processes.
Resumo:
Losses of horticulture product in Brazil are significant and among the main causes are the use of inappropriate boxes and the absence of a cold chain. A project for boxes is proposed, based on computer simulations, optimization and experimental validation, trying to minimize the amount of wood associated with structural and ergonomic aspects and the effective area of the openings. Three box prototypes were designed and built using straight laths with different configurations and areas of openings (54% and 36%). The cooling efficiency of Tommy Atkins mango (Mangifera Indica L.) was evaluated by determining the cooling time for fruit packed in the wood models and packed in the commercially used cardboard boxes, submitted to cooling in a forced-air system, at a temperature of 6ºC and average relative humidity of 85.4±2.1%. The Finite Element Method was applied, for the dimensioning and structural optimization of the model with the best behavior in relation to cooling. All wooden boxes with fruit underwent vibration testing for two hours (20 Hz). There was no significant difference in average cooling time in the wooden boxes (36.08±1.44 min); however, the difference was significant in comparison to the cardboard boxes (82.63±29.64 min). In the model chosen for structural optimization (36% effective area of openings and two side laths), the reduction in total volume of material was 60% and 83% in the cross section of the columns. There was no indication of mechanical damage in the fruit after undergoing the vibration test. Computer simulations and structural study may be used as a support tool for developing projects for boxes, with geometric, ergonomic and thermal criteria.