5 resultados para sugar can production
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Currently, owing to the occurrence of environmental problems, along with the need of environmental preservation, both the territory management of Hydrographic Basin and the conservation of natural resources have proven to have remarkable importance. Thus, the mean goal of the research is to raise and scrutinize social-economic and technologic data from the Mogi Guaçu River Hydrographic Basin (São Paulo, Brazil). The aim is to group municipalities with similar characteristics regarding the collected data, which may direct joint actions in the Hydrographic Basin Management. There were used both the methods of factorial analysis and automatic hierarchical classifications. Additionally, there is going to be applied a Geographical Information System to represent the outcomes of the methods aforementioned, through the evolvement of a geo-referenced database, which will allow the obtainment of information categorically distributed including theme maps of interest. The main characteristics adopted to group the municipalities were: agricultural area, sugar cane production, small farms, animal production, number of agriculture machinery and equipments and agricultural income. The methodology adopted in the Mogi Guaçu River Hydrographic Basin will be analyzed vis-à-vis its appropriateness on basin management, as well as the possibility of assisting the studies on behalf of the São Paulo Hydrographic Basin groups, to regional development.
Resumo:
This work assessed the environmental impacts of the production and use of 1 MJ of hydrous ethanol (E100) in Brazil in prospective scenarios (2020-2030), considering the deployment of technologies currently under development and better agricultural practices. The life cycle assessment technique was employed using the CML method for the life cycle impact assessment and the Monte Carlo method for the uncertainty analysis. Abiotic depletion, global warming, human toxicity, ecotoxicity, photochemical oxidation, acidification, and eutrophication were the environmental impacts categories analyzed. Results indicate that the proposed improvements (especially no-til farming-scenarios s2 and s4) would lead to environmental benefits in prospective scenarios compared to the current ethanol production (scenario s0). Combined first and second generation ethanol production (scenarios s3 and s4) would require less agricultural land but would not perform better than the projected first generation ethanol, although the uncertainties are relatively high. The best use of 1 ha of sugar cane was also assessed, considering the displacement of the conventional products by ethanol and electricity. No-til practices combined with the production of first generation ethanol and electricity (scenario s2) would lead to the largest mitigation effects for global warming and abiotic depletion. For the remaining categories, emissions would not be mitigated with the utilization of the sugar cane products. However, this conclusion is sensitive to the displaced electricity sources.
Resumo:
Many Bacillus species can produce biosurfactant, although most of the studies on lipopeptide production by this genus have been focused on Bacillus subtilis. Surfactants are broadly used in pharmaceutical, food and petroleum industry, and biological surfactant shows some advantages over the chemical surfactants, such as less toxicity, production from renewable, cheaper feedstocks and development of novel recombinant hyperproducer strains. This study is aimed to unveil the biosurfactant metabolic pathway and chemical composition in Bacillus safensis strain CCMA-560. The whole genome of the CCMA-560 strain was previously sequenced, and with the aid of bioinformatics tools, its biosurfactant metabolic pathway was compared to other pathways of closely related species. Fourier transform infrared (FTIR) and high-resolution TOF mass spectrometry (MS) were used to characterize the biosurfactant molecule. B. safensis CCMA-560 metabolic pathway is similar to other Bacillus species; however, some differences in amino acid incorporation were observed, and chemical analyses corroborated the genetic results. The strain CCMA-560 harbours two genes flanked by srfAC and srfAD not present in other Bacillus spp., which can be involved in the production of the analogue gramicidin. FTIR and MS showed that B. safensis CCMA-560 produces a mixture of at least four lipopeptides with seven amino acids incorporated and a fatty acid chain with 14 carbons, which makes this molecule similar to the biosurfactant of Bacillus pumilus, namely, pumilacidin. This is the first report on the biosurfactant production by B. safensis, encompassing the investigation of the metabolic pathway and chemical characterization of the biosurfactant molecule.
Resumo:
In the past few decades, the textile industry has significantly increased investment in research to develop functional fabrics, with a special focus on those aggregating values. Such fabrics can exploit microparticles inferior to 100 μm, such as those made by complex coacervation in their creation. The antimicrobial properties of chitosan can be attributed to these microparticles. Developing particles with uniform structure and properties would facilitate the control for the eventual release of the core material. Thus, a complex coacervation between gelatin and chitosan was studied, and the optimal conditions were replicated in the encapsulation of limonene. Spherical particles formed had an average diameter (D3,2) of 30 μm and were prepared with 89.7% efficiency. Cross-linking of these microparticles using glutaraldehyde and tripolyphosphate was carried out before spray drying. After drying, microparticles cross-linked with glutaraldehyde were oxidized and clustered and those that were cross-linked with tripolyphosphate resisted drying and presented a high yield.
Resumo:
Some bacteria common in anaerobic digestion process can ferment a broad variety of organic compounds to organic acids, alcohols, and hydrogen, which can be used as biofuels. Researches are necessary to control the microbial interactions in favor of the alcohol production, as intermediary products of the anaerobic digestion of organic compounds. This paper reports on the effect of buffering capacity on the production of organic acids and alcohols from wastewater by a natural mixed bacterial culture. The hypothesis tested was that the increase of the buffering capacity by supplementation of sodium bicarbonate in the influent results in benefits for alcohol production by anaerobic fermentation of wastewater. When the influent was not supplemented with sodium bicarbonate, the chemical oxygen demand (COD)-ethanol and COD-methanol detected in the effluent corresponded to 22.5 and 12.7 % of the COD-sucrose consumed. Otherwise, when the reactor was fed with influent containing 0.5 g/L of sodium bicarbonate, the COD-ethanol and COD-methanol were effluents that corresponded to 39.2 and 29.6 % of the COD-sucrose consumed. Therefore, the alcohol production by supplementation of the influent with sodium bicarbonate was 33.6 % higher than the fermentation of the influent without sodium bicarbonate.