16 resultados para quantum single rings
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
One of the most important properties of quantum dots (QDs) is their size. Their size will determine optical properties and in a colloidal medium their range of interaction. The most common techniques used to measure QD size are transmission electron microscopy (TEM) and X-ray diffraction. However, these techniques demand the sample to be dried and under a vacuum. This way any hydrodynamic information is excluded and the preparation process may alter even the size of the QDs. Fluorescence correlation spectroscopy (FCS) is an optical technique with single molecule sensitivity capable of extracting the hydrodynamic radius (HR) of the QDs. The main drawback of FCS is the blinking phenomenon that alters the correlation function implicating in a QD apparent size smaller than it really is. In this work, we developed a method to exclude blinking of the FCS and measured the HR of colloidal QDs. We compared our results with TEM images, and the HR obtained by FCS is higher than the radius measured by TEM. We attribute this difference to the cap layer of the QD that cannot be seen in the TEM images.
Resumo:
Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections.
Resumo:
One of the great challenges of the scientific community on theories of genetic information, genetic communication and genetic coding is to determine a mathematical structure related to DNA sequences. In this paper we propose a model of an intra-cellular transmission system of genetic information similar to a model of a power and bandwidth efficient digital communication system in order to identify a mathematical structure in DNA sequences where such sequences are biologically relevant. The model of a transmission system of genetic information is concerned with the identification, reproduction and mathematical classification of the nucleotide sequence of single stranded DNA by the genetic encoder. Hence, a genetic encoder is devised where labelings and cyclic codes are established. The establishment of the algebraic structure of the corresponding codes alphabets, mappings, labelings, primitive polynomials (p(x)) and code generator polynomials (g(x)) are quite important in characterizing error-correcting codes subclasses of G-linear codes. These latter codes are useful for the identification, reproduction and mathematical classification of DNA sequences. The characterization of this model may contribute to the development of a methodology that can be applied in mutational analysis and polymorphisms, production of new drugs and genetic improvement, among other things, resulting in the reduction of time and laboratory costs.
Resumo:
The Ophira Mini Sling System involves anchoring a midurethral, low-tension tape to the obturator internus muscles bilaterally at the level of the tendinous arc. Success rates in different subsets of patients are still to be defined. This work aims to identify which factors influence the 2-year outcomes of this treatment. Analysis was based on data from a multicenter study. Endpoints for analysis included objective measurements: 1-h pad-weight (PWT), and cough stress test (CST), and questionnaires: International Consultation on Incontinence Questionnaire-Short Form (ICIQ-SF) and Urinary Distress Inventory (UDI)-6. A logistic regression analysis evaluated possible risk factors for failure. In all, 124 female patients with stress urinary incontinence (SUI) underwent treatment with the Ophira procedure. All patients completed 1 year of follow-up, and 95 complied with the 2-year evaluation. Longitudinal analysis showed no significant differences between results at 1 and 2 years. The 2-year overall objective results were 81 (85.3%) patients dry, six (6.3%) improved, and eight (8.4%) incontinent. A multivariate analysis revealed that previous anti-incontinence surgery was the only factor that significantly influenced surgical outcomes. Two years after treatment, women with previous failed surgeries had an odds ratio (OR) for treatment failure (based on PWT) of 4.0 [95% confidence interval (CI) 1.02-15.57). The Ophira procedure is an effective option for SUI treatment, with durable good results. Previous surgeries were identified as the only significant risk factor, though previously operated patients showed an acceptable success rate.
Resumo:
Assessment of central blood pressure (BP) has grown substantially over recent years because evidence has shown that central BP is more relevant to cardiovascular outcomes than peripheral BP. Thus, different classes of antihypertensive drugs have different effects on central BP despite similar reductions in brachial BP. The aim of this study was to investigate the effect of nebivolol, a β-blocker with vasodilator properties, on the biochemical and hemodynamic parameters of hypertensive patients. Experimental single cohort study conducted in the outpatient clinic of a university hospital. Twenty-six patients were recruited. All of them underwent biochemical and hemodynamic evaluation (BP, heart rate (HR), central BP and augmentation index) before and after 3 months of using nebivolol. 88.5% of the patients were male; their mean age was 49.7 ± 9.3 years and most of them were overweight (29.6 ± 3.1 kg/m2) with large abdominal waist (102.1 ± 7.2 cm). There were significant decreases in peripheral systolic BP (P = 0.0020), diastolic BP (P = 0.0049), HR (P < 0.0001) and central BP (129.9 ± 12.3 versus 122.3 ± 10.3 mmHg; P = 0.0083) after treatment, in comparison with the baseline values. There was no statistical difference in the augmentation index or in the biochemical parameters, from before to after the treatment. Nebivolol use seems to be associated with significant reduction of central BP in stage I hypertensive patients, in addition to reductions in brachial systolic and diastolic BP.
Resumo:
Hereditary angioedema (HAE) with C1 inhibitor deficiency manifests as recurrent episodes of edema involving the skin, upper respiratory tract and gastrointestinal tract. It can be lethal due to asphyxia. The aim here was to evaluate the response to therapy for these attacks using icatibant, an inhibitor of the bradykinin receptor, which was recently introduced into Brazil. Prospective experimental single-cohort study on the efficacy and safety of icatibant for HAE patients. Patients with a confirmed HAE diagnosis were enrolled according to symptoms and regardless of the time since onset of the attack. Icatibant was administered in accordance with the protocol that has been approved in Brazil. Symptom severity was assessed continuously and adverse events were monitored. 24 attacks in 20 HAE patients were treated (female/male 19:1; 19-55 years; median 29 years of age). The symptoms were: subcutaneous edema (22/24); abdominal pain (15/24) and upper airway obstruction (10/24). The time taken until onset of relief was: 5-10 minutes (5/24; 20.8%); 10-20 (5/24; 20.8%); 20-30 (8/24; 33.4%); 30-60 (5/24; 20.8%); and 2 hours (1/24; 4.3%). The time taken for complete resolution of symptoms ranged from 4.3 to 33.4 hours. Adverse effects were only reported at injection sites. Mild to moderate erythema and/or feelings of burning were reported by 15/24 patients, itching by 3 and no adverse effects in 6. HAE type I patients who received icatibant responded promptly; most achieved improved symptom severity within 30 minutes. Local adverse events occurred in 75% of the patients.
Resumo:
This chapter provides a short review of quantum dots (QDs) physics, applications, and perspectives. The main advantage of QDs over bulk semiconductors is the fact that the size became a control parameter to tailor the optical properties of new materials. Size changes the confinement energy which alters the optical properties of the material, such as absorption, refractive index, and emission bands. Therefore, by using QDs one can make several kinds of optical devices. One of these devices transforms electrons into photons to apply them as active optical components in illumination and displays. Other devices enable the transformation of photons into electrons to produce QDs solar cells or photodetectors. At the biomedical interface, the application of QDs, which is the most important aspect in this book, is based on fluorescence, which essentially transforms photons into photons of different wavelengths. This chapter introduces important parameters for QDs' biophotonic applications such as photostability, excitation and emission profiles, and quantum efficiency. We also present the perspectives for the use of QDs in fluorescence lifetime imaging (FLIM) and Förster resonance energy transfer (FRET), so useful in modern microscopy, and how to take advantage of the usually unwanted blinking effect to perform super-resolution microscopy.
Resumo:
Fluorescence Correlation Spectroscopy (FCS) is an optical technique that allows the measurement of the diffusion coefficient of molecules in a diluted sample. From the diffusion coefficient it is possible to calculate the hydrodynamic radius of the molecules. For colloidal quantum dots (QDs) the hydrodynamic radius is valuable information to study interactions with other molecules or other QDs. In this chapter we describe the main aspects of the technique and how to use it to calculate the hydrodynamic radius of quantum dots (QDs).
Resumo:
Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.
Resumo:
A temperature pause introduced in a simple single-step thermal decomposition of iron, with the presence of silver seeds formed in the same reaction mixture, gives rise to novel compact heterostructures: brick-like Ag@Fe3O4 core-shell nanoparticles. This novel method is relatively easy to implement, and could contribute to overcome the challenge of obtaining a multifunctional heteroparticle in which a noble metal is surrounded by magnetite. Structural analyses of the samples show 4 nm silver nanoparticles wrapped within compact cubic external structures of Fe oxide, with curious rectangular shape. The magnetic properties indicate a near superparamagnetic like behavior with a weak hysteresis at room temperature. The value of the anisotropy involved makes these particles candidates to potential applications in nanomedicine.
Resumo:
Background: Ruthenium (Ru) tetraamines are being increasingly used as nitric oxide (NO) carriers. In this context, pharmacological studies have become highly relevant to better understand the mechanism of action involved. Objective: To evaluate the vascular response of the tetraamines trans-[RuII(NH3)4(Py)(NO)]3+, trans-[RuII(Cl)(NO) (cyclan)](PF6)2, and trans-[RuII(NH3)4(4-acPy)(NO)]3+. Methods: Aortic rings were contracted with noradrenaline (10-6 M). After voltage stabilization, a single concentration (10-6 M) of the compounds was added to the assay medium. The responses were recorded during 120 min. Vascular integrity was assessed functionally using acetylcholine at 10-6 M and sodium nitroprusside at 10-6 M as well as by histological examination. Results: Histological analysis confirmed the presence or absence of endothelial cells in those tissues. All tetraamine complexes altered the contractile response induced by norepinephrine, resulting in increased tone followed by relaxation. In rings with endothelium, the inhibition of endothelial NO caused a reduction of the contractile effect caused by pyridine NO. No significant responses were observed in rings with endothelium after treatment with cyclan NO. In contrast, in rings without endothelium, the inhibition of guanylate cyclase significantly reduced the contractile response caused by the pyridine NO and cyclan NO complexes, and both complexes caused a relaxing effect. Conclusion: The results indicate that the vascular effect of the evaluated complexes involved a decrease in the vascular tone induced by norepinephrine (10-6 M) at the end of the incubation period in aortic rings with and without endothelium, indicating the slow release of NO from these complexes and suggesting that the ligands promoted chemical stability to the molecule. Moreover, we demonstrated that the association of Ru with NO is more stable when the ligands pyridine and cyclan are used in the formulation of the compound.Fundamento: As tetra-aminas de rutênio cada vez mais se destacam como carreadoras da molécula de óxido nítrico. Desse modo, estudos farmacológicos tornam-se altamente relevantes, afim de melhor compreender o mecanismo de ação envolvido. Objetivo: Avaliar a resposta vascular das tetra-aminas trans-[RuII(NH3)4(Py)(NO)]3+, trans-[RuII(Cl)(NO)(Cyclan)](PF6)2 e trans-[RuII(NH3)4(4-acPy)(NO)]3+. Métodos: Anéis de aorta foram pré-contraídos com noradrenalina (10-6M). Após estabilização da tensão, concentração única (10-6M) dos compostos foi adicionada ao banho de incubação. As respostas foram registradas ao longo de 120 minutos. A integridade vascular foi avaliada funcionalmente (acetilcolina 10-6M; nitroprussiato de sódio 10-6M) e histologicamente Resultados: A análise histológica confirmou a presença ou não de células endoteliais nos tecidos analisados. Todos os complexos alteraram a resposta contrátil induzida pela noradrenalina, resultando em aumento de tônus seguido de efeito relaxante. Em anéis com endotélio, a inibição do óxido nítrico endotelial causou redução do efeito contrátil da piridina óxido nítrico. Não foram observadas respostas significativas em anéis com endotélio referente ao composto cyclan óxido nítrico. Por outro lado, em anéis sem endotélio, a inibição da guanilato ciclase reduziu significativamente a resposta contrátil dos complexos piridina óxido nítrico e cyclan óxido nítrico, levando ambos os compostos a um efeito relaxante. Conclusão: Os resultados obtidos demonstram que o efeito vascular dos complexos avaliados apresentaram diminuição no tônus vascular induzido pela noradrenalina (10-6M) ao final do tempo de incubação, em anéis com e sem endotélio, indicando liberação lenta da molécula de óxido nítrico do composto estudado e sugerindo que os ligantes causaram estabilidade química à molécula. Demonstramos que a ligação rutênio óxido nítrico é mais estável quando utilizamos os ligantes piridina e cyclan para a formulação do composto.
Resumo:
A versatile and metal-free approach for the synthesis of carbocycles and of heterocycles bearing seven- and eight-membered rings is described. The strategy is based on ring expansion of 1-vinylcycloalkanols (or the corresponding silyl or methyl ether) mediated by the hypervalent iodine reagent HTIB (PhI(OH)OTs). Reaction conditions can be easily adjusted to give ring expansion products bearing different functional groups. A route to medium-ring lactones was also developed.
Resumo:
Condensation processes are of key importance in nature and play a fundamental role in chemistry and physics. Owing to size effects at the nanoscale, it is conceptually desired to experimentally probe the dependence of condensate structure on the number of constituents one by one. Here we present an approach to study a condensation process atom-by-atom with the scanning tunnelling microscope, which provides a direct real-space access with atomic precision to the aggregates formed in atomically defined 'quantum boxes'. Our analysis reveals the subtle interplay of competing directional and nondirectional interactions in the emergence of structure and provides unprecedented input for the structural comparison with quantum mechanical models. This approach focuses on-but is not limited to-the model case of xenon condensation and goes significantly beyond the well-established statistical size analysis of clusters in atomic or molecular beams by mass spectrometry.
Resumo:
Mesangial cells subject to high extracellular glucose concentrations, as occur in hyperglycaemic states, are unable to down regulate glucose influx, resulting in intracellular activation of deleterious biochemical pathways. A high expression of GLUT1 participates in the development of diabetic glomerulopathy. Variants in the gene encoding GLUT1 (SLC2A1) have been associated to this diabetic complication. The aim of this study was to test whether polymorphisms in SLC2A1 confer susceptibility to diabetic nephropathy (DN) in Brazilian type 1 diabetes patients. Four polymorphisms (rs3820589, rs1385129, rs841847 and rs841848) were genotyped in a Brazilian cohort comprised of 452 patients. A prospective analysis was performed in 155 patients. Mean duration of follow-up was 5.6±2.4years and the incidence of renal events was 18.0%. The rs3820589 presented an inverse association with the prevalence of incipient DN (OR: 0.36, 95% CI: 0.16 - 0.80, p=0.01) and with progression to renal events (HR: 0.20; 95% CI: 0.03 - 0.70; p=0.009). AGGT and AGAC haplotypes were associated with the prevalence of incipient DN and the AGAC haplotype was also associated with the prevalence of established/advanced DN. In conclusion, rs3820589 in the SLC2A1 gene modulates the risk to DN in Brazilian patients with inadequate type 1 diabetes control.
Resumo:
We report a combined study of external pressure and Cu-substitution on BaFe2As2 single crystals grown by the in-flux technique. At ambient pressure, the Cu-substitution is known to suppress the spin density wave (SDW) phase in pure BaFe2As2(TSDW ≈ 140 K) and to induce a superconducting (SC) dome with a maximum transition temperature [Formula: see text]. This [Formula: see text] is much lower than the Tc ∼ 15-28 K achieved in the case of Ru, Ni and Co substitutions. Such a lower Tc is attributed to a Cu(2+) magnetic pair-breaking effect. The latter is strongly suppressed by applied pressure, as shown herein, Tc can be significantly enhanced by applying high pressures. In this work, we investigated the pressure effects on Cu(2+) magnetic pair-breaking in the BaFe2-xCuxAs2 series. Around the optimal concentration (xopd = 0.11), all samples showed a substantial increase of Tc as a function of pressure. Yet for those samples with a slightly higher doping level (over-doped regime), Tc presented a dome-like shape with maximum Tc ≃ 8 K. Remarkably interesting, the under-doped samples, e.g. x = 0.02 display a maximum pressure induced Tc ≃ 30 K which is comparable to the maximum Tc's found for the pure compound under external pressures. Furthermore, the magnetoresistance effect as a function of pressure in the normal state of the x = 0.02 sample also presented an evolution consistent with the screening of the Cu(2+) local moments. These findings demonstrate that the Cu(2+) magnetic pair-breaking effect is completely suppressed by applying pressure in the low concentration regime of Cu(2+) substituted BaFe2As2.