4 resultados para protein-nucleotide interactions

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

40.00% 40.00%

Publicador:

Resumo:

High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two-hybrid, proteomics and metabolomics datasets, but it is also extendable to other datasets. IIS is freely available online at: http://www.lge.ibi.unicamp.br/lnbio/IIS/.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate associations between polymorphisms of the N-acetyltransferase 2 (NAT2), human 8-oxoguanine glycosylase 1 (hOGG1) and X-ray repair cross-complementing protein 1 (XRCC1) genes and risk of upper aerodigestive tract (UADT) cancer. A case-control study involving 117 cases and 224 controls was undertaken. The NAT2 gene polymorphisms were genotyped by automated sequencing and XRCC1 Arg399Gln and hOGG1 Ser326Cys polymorphisms were determined by Polymerase Chain Reaction followed by Restriction Fragment Length Polymorphism (PCR-RFLP) methods. Slow metabolization phenotype was significantly associated as a risk factor for the development of UADT cancer (p=0.038). Furthermore, haplotype of slow metabolization was also associated with UADT cancer (p=0.014). The hOGG1 Ser326Cys polymorphism (CG or GG vs. CC genotypes) was shown as a protective factor against UADT cancer in moderate smokers (p=0.031). The XRCC1 Arg399Gln polymorphism (GA or AA vs. GG genotypes), in turn, was a protective factor against UADT cancer only among never-drinkers (p=0.048). Interactions involving NAT2, XRCC1 Arg399Gln and hOGG1 Ser326Cys polymorphisms may modulate the risk of UADT cancer in this population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last ten years, graphene oxide has been explored in many applications due to its remarkable electroconductivity, thermal properties and mobility of charge carriers, among other properties. As discussed in this review, the literature suggests that a total characterization of graphene oxide must be conducted because oxidation debris (synthesis impurities) present in the graphene oxides could act as a graphene oxide surfactant, stabilizing aqueous dispersions. It is also important to note that the structure models of graphene oxide need to be revisited because of significant implications for its chemical composition and its direct covalent functionalization. Another aspect that is discussed is the need to consider graphene oxide surface chemistry. The hemolysis assay is recommended as a reliable test for the preliminary assessment of graphene oxide toxicity, biocompatibility and cell membrane interaction. More recently, graphene oxide has been extensively explored for drug delivery applications. An important increase in research efforts in this emerging field is clearly represented by the hundreds of related publications per year, including some reviews. Many studies have been performed to explore the graphene oxide properties that enable it to deliver more than one activity simultaneously and to combine multidrug systems with photothermal therapy, indicating that graphene oxide is an attractive tool to overcome hurdles in cancer therapies. Some strategic aspects of the application of these materials in cancer treatment are also discussed. In vitro studies have indicated that graphene oxide can also promote stem cell adhesion, growth and differentiation, and this review discusses the recent and pertinent findings regarding graphene oxide as a valuable nanomaterial for stem cell research in medicine. The protein corona is a key concept in nanomedicine and nanotoxicology because it provides a biomolecular identity for nanomaterials in a biological environment. Understanding protein corona-nanomaterial interactions and their influence on cellular responses is a challenging task at the nanobiointerface. New aspects and developments in this area are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants are sessile organisms and have evolved to tolerate a constantly changing environment. After the onset of different stress conditions, calcineurin B-like (CBL) proteins can sense calcium signals and activate CBL-interacting protein kinase (CIPK) proteins, which can phosphorylate downstream proteins to reestablish plant homeostasis. Previous studies in the bioenergy crop sugarcane showed that the ScCIPK8 gene is induced by drought stress and is also related to sucrose content. Here, we have characterized the protein-protein interactions of ScCIPK8 with six CBL proteins (ScCBL1, ScCBL2, ScCBL3, ScCBL6, ScCBL9, and ScCBL10). Yeast two-hybrid assays showed that ScCIPK8 interacts with ScCBL1, ScCBL3, and ScCBL6. Bimolecular fluorescence complementation assays confirmed in planta the interactions that were observed in yeast cells. These findings give insights on the regulatory networks related to sugar accumulation and drought stress responses in sugarcane.