19 resultados para protein-nucleotide interactions
em CaltechTHESIS
Resumo:
Viruses possess very specific methods of targeting and entering cells. These methods would be extremely useful if they could also be applied to drug delivery, but little is known about the molecular mechanisms of the viral entry process. In order to gain further insight into mechanisms of viral entry, chemical and spectroscopic studies in two systems were conducted, examining hydrophobic protein-lipid interactions during Sendai virus membrane fusion, and the kinetics of bacteriophage λ DNA injection.
Sendai virus glycoprotein interactions with target membranes during the early stages of fusion were examined using time-resolved hydrophobic photoaffinity labeling with the lipid-soluble carbene generator3-(trifluoromethyl)-3-(m-^(125 )I] iodophenyl)diazirine (TID). The probe was incorporated in target membranes prior to virus addition and photolysis. During Sendai virus fusion with liposomes composed of cardiolipin (CL) or phosphatidylserine (PS), the viral fusion (F) protein is preferentially labeled at early time points, supporting the hypothesis that hydrophobic interaction of the fusion peptide at the N-terminus of the F_1 subunit with the target membrane is an initiating event in fusion. Correlation of the hydrophobic interactions with independently monitored fusion kinetics further supports this conclusion. Separation of proteins after labeling shows that the F_1 subunit, containing the putative hydrophobic fusion sequence, is exclusively labeled, and that the F_2 subunit does not participate in fusion. Labeling shows temperature and pH dependence consistent with a need for protein conformational mobility and fusion at neutral pH. Higher amounts of labeling during fusion with CL vesicles than during virus-PS vesicle fusion reflects membrane packing regulation of peptide insertion into target membranes. Labeling of the viral hemagglutinin/neuraminidase (HN) at low pH indicates that HN-mediated fusion is triggered by hydrophobic interactions, after titration of acidic amino acids. HN labeling under nonfusogenic conditions reveals that viral binding may involve hydrophobic as well as electrostatic interactions. Controls for diffusional labeling exclude a major contribution from this source. Labeling during reconstituted Sendai virus envelope-liposome fusion shows that functional reconstitution involves protein retention of the ability to undergo hydrophobic interactions.
Examination of Sendai virus fusion with erythrocyte membranes indicates that hydrophobic interactions also trigger fusion between biological membranes, and that HN binding may involve hydrophobic interactions as well. Labeling of the erythrocyte membranes revealed close membrane association of spectrin, which may play a role in regulating membrane fusion. The data show that hydrophobic fusion protein interaction with both artificial and biological membranes is a triggering event in fusion. Correlation of these results with earlier studies of membrane hydration and fusion kinetics provides a more detailed view of the mechanism of fusion.
The kinetics of DNA injection by bacteriophage λ. into liposomes bearing reconstituted receptors were measured using fluorescence spectroscopy. LamB, the bacteriophage receptor, was extracted from bacteria and reconstituted into liposomes by detergent removal dialysis. The DNA binding fluorophore ethidium bromide was encapsulated in the liposomes during dialysis. Enhanced fluorescence of ethidium bromide upon binding to injected DNA was monitored, and showed that injection is a rapid, one-step process. The bimolecular rate law, determined by the method of initial rates, revealed that injection occurs several times faster than indicated by earlier studies employing indirect assays.
It is hoped that these studies will increase the understanding of the mechanisms of virus entry into cells, and to facilitate the development of virus-mimetic drug delivery strategies.
Resumo:
Single-cell functional proteomics assays can connect genomic information to biological function through quantitative and multiplex protein measurements. Tools for single-cell proteomics have developed rapidly over the past 5 years and are providing unique opportunities. This thesis describes an emerging microfluidics-based toolkit for single cell functional proteomics, focusing on the development of the single cell barcode chips (SCBCs) with applications in fundamental and translational cancer research.
The microchip designed to simultaneously quantify a panel of secreted, cytoplasmic and membrane proteins from single cells will be discussed at the beginning, which is the prototype for subsequent proteomic microchips with more sophisticated design in preclinical cancer research or clinical applications. The SCBCs are a highly versatile and information rich tool for single-cell functional proteomics. They are based upon isolating individual cells, or defined number of cells, within microchambers, each of which is equipped with a large antibody microarray (the barcode), with between a few hundred to ten thousand microchambers included within a single microchip. Functional proteomics assays at single-cell resolution yield unique pieces of information that significantly shape the way of thinking on cancer research. An in-depth discussion about analysis and interpretation of the unique information such as functional protein fluctuations and protein-protein correlative interactions will follow.
The SCBC is a powerful tool to resolve the functional heterogeneity of cancer cells. It has the capacity to extract a comprehensive picture of the signal transduction network from single tumor cells and thus provides insight into the effect of targeted therapies on protein signaling networks. We will demonstrate this point through applying the SCBCs to investigate three isogenic cell lines of glioblastoma multiforme (GBM).
The cancer cell population is highly heterogeneous with high-amplitude fluctuation at the single cell level, which in turn grants the robustness of the entire population. The concept that a stable population existing in the presence of random fluctuations is reminiscent of many physical systems that are successfully understood using statistical physics. Thus, tools derived from that field can probably be applied to using fluctuations to determine the nature of signaling networks. In the second part of the thesis, we will focus on such a case to use thermodynamics-motivated principles to understand cancer cell hypoxia, where single cell proteomics assays coupled with a quantitative version of Le Chatelier's principle derived from statistical mechanics yield detailed and surprising predictions, which were found to be correct in both cell line and primary tumor model.
The third part of the thesis demonstrates the application of this technology in the preclinical cancer research to study the GBM cancer cell resistance to molecular targeted therapy. Physical approaches to anticipate therapy resistance and to identify effective therapy combinations will be discussed in detail. Our approach is based upon elucidating the signaling coordination within the phosphoprotein signaling pathways that are hyperactivated in human GBMs, and interrogating how that coordination responds to the perturbation of targeted inhibitor. Strongly coupled protein-protein interactions constitute most signaling cascades. A physical analogy of such a system is the strongly coupled atom-atom interactions in a crystal lattice. Similar to decomposing the atomic interactions into a series of independent normal vibrational modes, a simplified picture of signaling network coordination can also be achieved by diagonalizing protein-protein correlation or covariance matrices to decompose the pairwise correlative interactions into a set of distinct linear combinations of signaling proteins (i.e. independent signaling modes). By doing so, two independent signaling modes – one associated with mTOR signaling and a second associated with ERK/Src signaling have been resolved, which in turn allow us to anticipate resistance, and to design combination therapies that are effective, as well as identify those therapies and therapy combinations that will be ineffective. We validated our predictions in mouse tumor models and all predictions were borne out.
In the last part, some preliminary results about the clinical translation of single-cell proteomics chips will be presented. The successful demonstration of our work on human-derived xenografts provides the rationale to extend our current work into the clinic. It will enable us to interrogate GBM tumor samples in a way that could potentially yield a straightforward, rapid interpretation so that we can give therapeutic guidance to the attending physicians within a clinical relevant time scale. The technical challenges of the clinical translation will be presented and our solutions to address the challenges will be discussed as well. A clinical case study will then follow, where some preliminary data collected from a pediatric GBM patient bearing an EGFR amplified tumor will be presented to demonstrate the general protocol and the workflow of the proposed clinical studies.
Resumo:
Pyrrole–Imidazole polyamides are programmable, cell-permeable small molecules that bind in the minor groove of double-stranded DNA sequence-specifically. Polyamide binding has been shown to alter the local helical structure of DNA, disrupt protein-DNA interactions, and modulate endogenous gene expression. Py–Im polyamides targeted to the androgen receptor-DNA interface have been observed to decrease expression of androgen-regulated genes, upregulate p53, and induce apoptosis in a hormone-sensitive prostate cancer cell line. Here we report that androgen response element (ARE)-targeted polyamides induced DNA replication stress in a hormone-insensitive prostate cancer cell line. The ATR checkpoint kinase was activated in response to this stress, causing phosphorylation of MCM2, and FANCD2 was monoubiquitinated. Surprisingly, little single-stranded DNA was exhibited, and the ATR targets RPA2 and Chk1 were not phosphorylated. We conclude that polyamide induces relatively low level replication stress, and suggest inhibition of the replicative helicase as a putative mechanism based on in vitro assays. We also demonstrate polyamide-induced inhibition of DNA replication in cell free extracts from X. laevis oocytes. In this system, inhibition of chromatin decondensation is observed, preventing DNA replication initiation. Finally, we show that Py-Im polyamides targeted to the ARE and ETS binding sequence downregulate AR- and ERG-driven signaling in a prostate cancer cell line harboring the TMPRSS2-ERG fusion. In a mouse xenograft model, ARE-targeted polyamide treatment reduced growth of the tumor.
Resumo:
DNA recognition is an essential biological process responsible for the regulation of cellular functions including protein synthesis and cell division and is implicated in the mechanism of action of some anticancer drugs. Studies directed towards defining the elements responsible for sequence specific DNA recognition through the study of the interactions of synthetic organic ligands with DNA are described.
DNA recognition by poly-N-methylpyrrolecarboxamides was studied by the synthesis and characterization of a series of molecules where the number of contiguous N-methylpyrrolecarboxamide units was increased from 2 to 9. The effect of this incremental change in structure on DNA recognition has been investigated at base pair resolution using affinity cleaving and MPE•Fe(II) footprinting techniques. These studies led to a quantitative relationship between the number of amides in the molecule and the DNA binding site size. This relationship is called the n + 1 rule and it states that a poly-N methylpyrrolecarboxamide molecule with n amides will bind n + 1 base pairs of DNA. This rule is consistent with a model where the carboxamides of these compounds form three center bridging hydrogen bonds between adjacent base pairs on opposite strands of the helix. The poly-N methylpyrrolecarboxamide recognition element was found to preferentially bind poly dA•poly dT stretches; however, both binding site selection and orientation were found to be affected by flanking sequences. Cleavage of large DNA is also described.
One approach towards the design of molecules that bind large sequences of double helical DNA sequence specifically is to couple DNA binding subunits of similar or diverse base pair specificity. Bis-EDTA-distamycin-fumaramide (BEDF) is an octaamide dimer of two tri-N methylpyrrolecarboxamide subunits linked by fumaramide. DNA recognition by BEDF was compared to P7E, an octaamide molecule containing seven consecutive pyrroles. These two compounds were found to recognize the same sites on pBR322 with approximately the same affinities demonstrating that fumaramide is an effective linking element for Nmethylpyrrolecarboxamide recognition subunits. Further studies involved the synthesis and characterization of a trimer of tetra-N-methylpyrrolecarboxamide subunits linked by β-alanine ((P4)_(3)E). This trimerization produced a molecule which is capable of recognizing 16 base pairs of A•T DNA, more than a turn and a half of the DNA helix.
DNA footprinting is a powerful direct method for determining the binding sites of proteins and small molecules on heterogeneous DNA. It was found that attachment of EDTA•Fe(II) to spermine creates a molecule, SE•Fe(II), which binds and cleaves DNA sequence neutrally. This lack of specificity provides evidence that at the nucleotide level polyamines recognize heterogeneous DNA independent of sequence and allows SE•Fe(II) to be used as a footprinting reagent. SE•Fe(II) was compared with two other small molecule footprinting reagents, EDTA•Fe(II) and MPE•Fe(II).
Resumo:
A novel Ca^(2+)-binding protein with Mr of 23 K (designated p23) has been identified in avian erythrocytes and thrombocytes. p23 localizes to the marginal bands (MBs), centrosomes and discrete sites around the nuclear membrane in mature avian erythrocytes. p23 appears to bind Ca^(2+) directly and its interaction with subcellular organelles seems to be modulated by intracellular [Ca^(2+)]. However, its unique protein sequence lacks any known Ca^(2+)-binding motif. Developmental analysis reveals that p23 association to its target structures occurs only at very late stages of bone marrow definitive erythropoeisis. In primitive erythroid cells, p23 distributes diffusely in the cytoplasm and lacks any distinct localization. It is postulated that p23 association to subcellular structures may be induced in part by decreased intracellular [Ca^(2+)]. In vitro and in vivo experiments indicate that p23 does not appear to act as a classical microtubule-associated protein (MAP) but p23 homologues appear to be expressed in MB-containing cells of a variety of species from different vertebrate classes. It has been hypothesized that p23 may play a regulatory role in MB stabilization in a Ca^(2+)-dependent manner.
Binucleated (bnbn) turkey erythrocytes were found to express a truncated p23 variant (designated p21) with identical subcellular localization as p23 except immunostaining reveals the presence of multi-centrosomes in bnbn cells. The p21 sequence has a 62 amino acid deletion at the C-terminus and must therefore have an additional ~40 amino acids at the N-terminus. In addition, p21 seems to have lost the ability to bind Ca^(2+) and its supramolecular interactions are not modulated by intracellular [Ca^(2+)]. These apparent differences between p23 and p21 raised the possibility that the p23/p21 allelism could be the Bn/bn genotype. However, genetic analysis suggested that p23/p21 allelism had no absolute correlation with the Bn/bn genotype.
Resumo:
Interleukin-2 (IL-2) is an important mediator in the vertebrate immune system. IL-2 is a potent growth factor that mature T lymphocytes use as a proliferation signal and the production of IL-2 is crucial for the clonal expansion of antigen-specific T cells in the primary immune response. IL-2 driven proliferation is dependent on the interaction of the lymphokine with its cognate multichain receptor. IL-2 expression is induced only upon stimulation and transcriptional activation of the IL-2 gene relies extensively on the coordinate interaction of numerous inducible and constitutive trans-acting factors. Over the past several years, thousands of papers have been published regarding molecular and cellular aspects of IL-2 gene expression and IL-2 function. The vast majority of these reports describe work that has been carried out in vitro. However, considerably less is known about control of IL-2 gene expression and IL-2 function in vivo.
To gain new insight into the regulation of IL-2 gene expression in vivo, anatomical and developmental patterns of IL-2 gene expression in the mouse were established by employing in situ hybridization and immunohistochemical staining methodologies to tissue sections generated from normal mice and mutant animals in which T -cell development was perturbed. Results from these studies revealed several interesting aspects of IL-2 gene expression, such as (1) induction of IL-2 gene expression and protein synthesis in the thymus, the primary site of T-cell development in the body, (2) cell-type specificity of IL-2 gene expression in vivo, (3) participation of IL-2 in the extrathymic expansion of mature T cells in particular tissues, independent of an acute immune response to foreign antigen, (4) involvement of IL-2 in maintaining immunologic balance in the mucosal immune system, and (5) potential function of IL-2 in early events associated with hematopoiesis.
Extensive analysis of IL-2 mRNA accumulation and protein production in the murine thymus at various stages of development established the existence of two classes of intrathymic IL-2 producing cells. One class of intrathymic IL-2 producers was found exclusively in the fetal thymus. Cells belonging to this subset were restricted to the outermost region of the thymus. IL-2 expression in the fetal thymus was highly transient; a dramatic peak ofiL-2 mRNA accumulation was identified at day 14.5 of gestation and maximal IL-2 protein production was observed 12 hours later, after which both IL-2 mRNA and protein levels rapidly decreased. Significantly, the presence of IL-2 expressing cells in the day 14-15 fetal thymus was not contingent on the generation of T-cell receptor (TcR) positive cells. The second class of IL-2 producing cells was also detectable in the fetal thymus (cells found in this class represented a minority subset of IL-2 producers in the fetal thymus) but persist in the thymus during later stages of development and after birth. Intrathymic IL-2 producers in postnatal animals were located in the subcapsular region and cortex, indicating that these cells reside in the same areas where immature T cells are consigned. The frequency of IL-2 expressing cells in the postnatal thymus was extremely low, indicating that induction of IL-2 expression and protein synthesis are indicative of a rare activation event. Unlike the fetal class of intrathymic IL-2 producers, the presence of IL-2 producing cells in the postnatal thymus was dependent on to the generation of TcR+ cells. Subsequent examination of intrathymic IL-2 production in mutant postnatal mice unable to produce either αβ or γδ T cells showed that postnatal IL-2 producers in the thymus belong to both αβ and γδ lineages. Additionally, further studies indicated that IL-2 synthesis by immature αβ -T cells depends on the expression of bonafide TcR αβ-heterodimers. Taken altogether, IL-2 production in the postnatal thymus relies on the generation of αβ or γδ-TcR^+ cells and induction of IL-2 protein synthesis can be linked to an activation event mediated via the TcR.
With regard to tissue specificity of IL-2 gene expression in vivo, analysis of whole body sections obtained from normal neonatal mouse pups by in situ hybridization demonstrated that IL-2 mRNA^+ cells were found in both lymphoid and nonlymphoid tissues with which T cells are associated, such as the thymus (as described above), dermis and gut. Tissues devoid of IL-2 mRNA^+ cells included brain, heart, lung, liver, stomach, spine, spinal cord, kidney, and bladder. Additional analysis of isolated tissues taken from older animals revealed that IL-2 expression was undetectable in bone marrow and in nonactivated spleen and lymph nodes. Thus, it appears that extrathymic IL-2 expressing cells in nonimmunologically challenged animals are relegated to particular epidermal and epithelial tissues in which characterized subsets of T cells reside and thatinduction of IL-2 gene expression associated with these tissues may be a result of T-cell activation therein.
Based on the neonatal in situ hybridization results, a detailed investigation into possible induction of IL-2 expression resulting in IL-2 protein synthesis in the skin and gut revealed that IL-2 expression is induced in the epidermis and intestine and IL-2 protein is available to drive cell proliferation of resident cells and/or participate in immune function in these tissues. Pertaining to IL-2 expression in the skin, maximal IL-2 mRNA accumulation and protein production were observed when resident Vγ_3^+ T-cell populations were expanding. At this age, both IL-2 mRNA^+ cells and IL-2 protein production were intimately associated with hair follicles. Likewise, at this age a significant number of CD3ε^+ cells were also found in association with follicles. The colocalization of IL-2 expression and CD3ε^+ cells suggests that IL-2 expression is induced when T cells are in contact with hair follicles. In contrast, neither IL-2 mRNA nor IL-2 protein were readily detected once T-cell density in the skin reached steady-state proportions. At this point, T cells were no longer found associated with hair follicles but were evenly distributed throughout the epidermis. In addition, IL-2 expression in the skin was contingent upon the presence of mature T cells therein and induction of IL-2 protein synthesis in the skin did not depend on the expression of a specific TcR on resident T cells. These newly disclosed properties of IL-2 expression in the skin indicate that IL-2 may play an additional role in controlling mature T-cell proliferation by participating in the extrathymic expansion of T cells, particularly those associated with the epidermis.
Finally, regarding IL-2 expression and protein synthesis in the gut, IL-2 producing cells were found associated with the lamina propria of neonatal animals and gut-associated IL-2 production persisted throughout life. In older animals, the frequency of IL-2 producing cells in the small intestine was not identical to that in the large intestine and this difference may reflect regional specialization of the mucosal immune system in response to enteric antigen. Similar to other instances of IL-2 gene expression in vivo, a failure to generate mature T cells also led to an abrogation of IL-2 protein production in the gut. The presence of IL-2 producing cells in the neonatal gut suggested that these cells may be generated during fetal development. Examination of the fetal gut to determine the distribution of IL-2 producing cells therein indicated that there was a tenfold increase in the number of gut-associated IL-2 producers at day 20 of gestation compared to that observed four days earlier and there was little difference between the frequency of IL-2 producing cells in prenatal versus neonatal gut. The origin of these fetally-derived IL-2 producing cells is unclear. Prior to the immigration of IL-2 inducible cells to the fetal gut and/or induction of IL-2 expression therein, IL-2 protein was observed in the fetal liver and fetal omentum, as well as the fetal thymus. Considering that induction of IL-2 protein synthesis may be an indication of future functional capability, detection of IL-2 producing cells in the fetal liver and fetal omentum raises the possibility that IL-2 producing cells in the fetal gut may be extrathymic in origin and IL-2 producing cells in these fetal tissues may not belong solely to the T lineage. Overall, these results provide increased understanding of the nature of IL-2 producing cells in the gut and how the absence of IL-2 production therein and in fetal hematopoietic tissues can result in the acute pathology observed in IL-2 deficient animals.
Resumo:
A unique chloroplast Signal Recognition Particle (SRP) in green plants is primarily dedicated to the post-translational targeting of light harvesting chlorophyll-a/b binding (LHC) proteins. Our study of the thermodynamics and kinetics of the GTPases of the system demonstrates that GTPase complex assembly and activation are highly coupled in the chloroplast GTPases, suggesting they may forego the GTPase activation step as a key regulatory point. This reflects adaptations of the chloroplast SRP to the delivery of their unique substrate protein. Devotion to one highly hydrophobic family of proteins also may have allowed the chloroplast SRP system to evolve an efficient chaperone in the cpSRP43 subunit. To understand the mechanism of disaggregation, we showed that LHC proteins form micellar, disc-shaped aggregates that present a recognition motif (L18) on the aggregate surface. Further molecular genetic and structure-activity analyses reveal that the action of cpSRP43 can be dissected into two steps: (i) initial recognition of L18 on the aggregate surface; and (ii) aggregate remodeling, during which highly adaptable binding interactions of cpSRP43 with hydrophobic transmembrane domains of the substrate protein compete with the packing interactions within the aggregate. We also tested the adaptability of cpSRP43 for alternative substrates, specifically in attempts to improve membrane protein expression and inhibition of amyloid beta fibrillization. These preliminary results attest to cpSRP43’s potential as a molecular chaperone and provides the impetus for further engineering endeavors to address problems that stem from protein aggregation.
Resumo:
This dissertation describes studies of G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LGICs) using unnatural amino acid mutagenesis to gain high precision insights into the function of these important membrane proteins.
Chapter 2 considers the functional role of highly conserved proline residues within the transmembrane helices of the D2 dopamine GPCR. Through mutagenesis employing unnatural α-hydroxy acids, proline analogs, and N-methyl amino acids, we find that lack of backbone hydrogen bond donor ability is important to proline function. At one proline site we additionally find that a substituent on the proline backbone N is important to receptor function.
In Chapter 3, side chain conformation is probed by mutagenesis of GPCRs and the muscle-type nAChR. Specific side chain rearrangements of highly conserved residues have been proposed to accompany activation of these receptors. These rearrangements were probed using conformationally-biased β-substituted analogs of Trp and Phe and unnatural stereoisomers of Thr and Ile. We also modeled the conformational bias of the unnatural Trp and Phe analogs employed.
Chapters 4 and 5 examine details of ligand binding to nAChRs. Chapter 4 describes a study investigating the importance of hydrogen bonds between ligands and the complementary face of muscle-type and α4β4 nAChRs. A hydrogen bond involving the agonist appears to be important for ligand binding in the muscle-type receptor but not the α4β4 receptor.
Chapter 5 describes a study characterizing the binding of varenicline, an actively prescribed smoking cessation therapeutic, to the α7 nAChR. Additionally, binding interactions to the complementary face of the α7 binding site were examined for a small panel of agonists. We identified side chains important for binding large agonists such as varenicline, but dispensable for binding the small agonist ACh.
Chapter 6 describes efforts to image nAChRs site-specifically modified with a fluorophore by unnatural amino acid mutagenesis. While progress was hampered by high levels of fluorescent background, improvements to sample preparation and alternative strategies for fluorophore incorporation are described.
Chapter 7 describes efforts toward a fluorescence assay for G protein association with a GPCR, with the ultimate goal of probing key protein-protein interactions along the G protein/receptor interface. A wide range of fluorescent protein fusions were generated, expressed in Xenopus oocytes, and evaluated for their ability to associate with each other.
Resumo:
Efficient and accurate localization of membrane proteins is essential to all cells and requires a complex cascade of interactions between protein machineries. This is exemplified in the recently discovered Guided Entry of Tail-anchored protein pathway, in which the central targeting factor Get3 must sequentially interact with three distinct binding partners (Get4, Get1 and Get2) to ensure the targeted delivery of Tail-anchored proteins to the endoplasmic reticulum membrane. To understand the molecular and energetic principles that provide the vectorial driving force of these interactions, we used a quantitative fluorescence approach combined with mechanistic enzymology to monitor the effector interactions of Get3 at each stage of Tail-anchored protein targeting. We show that nucleotide and membrane protein substrate generate a gradient of interaction energies that drive the cyclic and ordered transit of Get3 from Get4 to Get2 and lastly to Get1. These data also define how the Get3/Tail-anchored complex is captured, handed over, and disassembled by the Get1/2 receptor at the membrane, and reveal a novel role for Get4/5 in recycling Get3 from the endoplasmic reticulum membrane at the end of the targeting reaction. These results provide general insights into how complex cascades of protein interactions are coordinated and coupled to energy inputs in biological systems.
Resumo:
This dissertation primarily describes chemical-scale studies of G protein-coupled receptors and Cys-loop ligand-gated ion channels to better understand ligand binding interactions and the mechanism of channel activation using recently published crystal structures as a guide. These studies employ the use of unnatural amino acid mutagenesis and electrophysiology to measure subtle changes in receptor function.
In chapter 2, the role of a conserved aromatic microdomain predicted in the D3 dopamine receptor is probed in the closely related D2 and D4 dopamine receptors. This domain was found to act as a structural unit near the ligand binding site that is important for receptor function. The domain consists of several functionally important noncovalent interactions including hydrogen bond, aromatic-aromatic, and sulfur-π interactions that show strong couplings by mutant cycle analysis. We also assign an alternate interpretation for the linear fluorination plot observed at W6.48, a residue previously thought to participate in a cation-π interaction with dopamine.
Chapter 3 outlines attempts to incorporate chemically synthesized and in vitro acylated unnatural amino acids into mammalian cells. While our attempts were not successful, method optimizations and data for nonsense suppression with an in vivo acylated tRNA are included. This chapter is aimed to aid future researchers attempting unnatural amino acid mutagenesis in mammalian cells.
Chapter 4 identifies a cation-π interaction between glutamate and a tyrosine residue on loop C in the GluClβ receptor. Using the recently published crystal structure of the homologous GluClα receptor, other ligand-binding and protein-protein interactions are probed to determine the similarity between this invertebrate receptor and other more distantly related vertebrate Cys-loop receptors. We find that many of the interactions previously observed are conserved in the GluCl receptors, however care must be taken when extrapolating structural data.
Chapter 5 examines inherent properties of the GluClα receptor that are responsible for the observed glutamate insensitivity of the receptor. Chimera synthesis and mutagenesis reveal the C-terminal portion of the M4 helix and the C-terminus as contributing to formation of the decoupled state, where ligand binding is incapable of triggering channel gating. Receptor mutagenesis was unable to identify single residue mismatches or impaired protein-protein interactions within this domain. We conclude that M4 helix structure and/or membrane dynamics are likely the cause of ligand insensitivity in this receptor and that the M4 helix has an role important in the activation process.
Resumo:
Signal recognition particle (SRP) and signal recognition particle receptor (SR) are evolutionarily conserved GTPases that deliver secretory and membrane proteins to the protein-conducting channel Sec61 complex in the lipid bilayer of the endoplasmic reticulum in eukaryotes or the SecYEG complex in the inner membrane of bacteria. Unlike the canonical Ras-type GTPases, SRP and SR are activated via nucleotide-dependent heterodimerization. Upon formation of the SR•SRP targeting complex, SRP and SR undergo a series of discrete conformational changes that culminate in their reciprocal activation and hydrolysis of GTP. How the SR•SRP GTPase cycle is regulated and coupled to the delivery of the cargo protein to the protein-conducting channel at the target membrane is not well-understood. Here we examine the role of the lipid bilayer and SecYEG in regulation of the SRP-mediated protein targeting pathway and show that they serve as important biological cues that spatially control the targeting reaction.
In the first chapter, we show that anionic phospholipids of the inner membrane activate the bacterial SR, FtsY, and favor the late conformational states of the targeting complex conducive to efficient unloading of the cargo. The results of our studies suggest that the lipid bilayer acts as a spatial cue that weakens the interaction of the cargo protein with SRP and primes the complex for unloading its cargo onto SecYEG.
In the second chapter, we focus on the effect of SecYEG on the conformational states and activity of the targeting complex. While phospholipids prime the complex for unloading its cargo, they are insufficient to trigger hydrolysis of GTP and the release of the cargo from the complex. SecYEG modulates the conformation of the targeting complex and triggers the GTP hydrolysis from the complex, thus driving the targeting reaction to completion. The results of this study suggest that SecYEG is not a passive recipient of the cargo protein; rather, it actively releases the cargo from the targeting complex. Together, anionic phospholipids and SecYEG serve distinct yet complementary roles. They spatially control the targeting reaction in a sequential manner, ensuring efficient delivery and unloading of the cargo protein.
In the third chapter, we reconstitute the transfer reaction in vitro and visualize it in real time. We show that the ribosome-nascent chain complex is transferred to SecYEG via a stepwise mechanism with gradual dissolution and formation of the contacts with SRP and SecYEG, respectively, explaining how the cargo is kept tethered to the membrane during the transfer and how its loss to the cytosol is avoided.
In the fourth chapter, we examine interaction of SecYEG with secretory and membrane proteins and attempt to address the role of a novel insertase YidC in this interaction. We show that detergent-solubilized SecYEG is capable of discriminating between the nascent chains of various lengths and engages a signal sequence in a well-defined conformation in the absence of accessory factors. Further, YidC alters the conformation of the signal peptide bound to SecYEG. The results described in this chapter show that YidC affects the SecYEG-nascent chain interaction at early stages of translocation/insertion and suggest a YidC-facilitated mechanism for lateral exit of transmembrane domains from SecYEG into the lipid bilayer.
Resumo:
Computational protein design (CPD) is a burgeoning field that uses a physical-chemical or knowledge-based scoring function to create protein variants with new or improved properties. This exciting approach has recently been used to generate proteins with entirely new functions, ones that are not observed in naturally occurring proteins. For example, several enzymes were designed to catalyze reactions that are not in the repertoire of any known natural enzyme. In these designs, novel catalytic activity was built de novo (from scratch) into a previously inert protein scaffold. In addition to de novo enzyme design, the computational design of protein-protein interactions can also be used to create novel functionality, such as neutralization of influenza. Our goal here was to design a protein that can self-assemble with DNA into nanowires. We used computational tools to homodimerize a transcription factor that binds a specific sequence of double-stranded DNA. We arranged the protein-protein and protein-DNA binding sites so that the self-assembly could occur in a linear fashion to generate nanowires. Upon mixing our designed protein homodimer with the double-stranded DNA, the molecules immediately self-assembled into nanowires. This nanowire topology was confirmed using atomic force microscopy. Co-crystal structure showed that the nanowire is assembled via the desired interactions. To the best of our knowledge, this is the first example of a protein-DNA self-assembly that does not rely on covalent interactions. We anticipate that this new material will stimulate further interest in the development of advanced biomaterials.
Resumo:
The investigations presented in this thesis use various in vivo techniques to understand how trans-acting factors control gene expression. The first part addresses the transcriptional regulation of muscle creatine kinase (MCK). MCK expression is activated during the course of development and is found only in differentiated muscle. Several in vivo footprints are observed at the enhancer of this gene, but all of these interactions are limited to cell types that express MCK. This is interesting because two of the footprints appear to represent muscle specific use of general transcription factors, while the other two correspond to sites that can bind the myogenic regulator, MyoD1, in vitro. MyoD1 and these general factors are present in myoblasts, but can bind to the enhancer only in myocytes. This suggests that either the factors themselves are post-translationally modified (phosphorylation or protein:protein interactions), or the accessibility of the enhancer to the factors is limited (changes in chromatin structure). The in vivo footprinting study of MCK was performed with a new ligation mediated, single-sided PCR (polymerase chain reaction) technique that I have developed.
The second half of the thesis concerns the regulation of mouse metallothionein (MT). Metallothioneins are a family of highly conserved housekeeping genes whose expression can be induced by heavy metals, steroids, and other stresses. By adapting a primer extension method of genomic sequencing to in vivo footprinting, I've observed both metal inducible and noninducible interactions at the promoter of MT-I. From these results I've been able to limit the possible mechanisms by which metal responsive trans-acting factors induce transcription. These interpretations correlate with a second line of experiments involving the stable titration of positive acting factors necessary for induction of MT. I've amplified the promoter of MT to 10^2-10^3 copies per cell by fusing the 5' and 3' ends of the MT gene to the coding region of DHFR and selecting cells for methotrexate resistance. In these cells, there is a metal-specific titration effect, and although it acts at the level of transcription, it appears to be independent of direct DNA binding factors.
Resumo:
G protein-coupled receptors (GPCRs) are the largest family of proteins within the human genome. They consist of seven transmembrane (TM) helices, with a N-terminal region of varying length and structure on the extracellular side, and a C-terminus on the intracellular side. GPCRs are involved in transmitting extracellular signals to cells, and as such are crucial drug targets. Designing pharmaceuticals to target GPCRs is greatly aided by full-atom structural information of the proteins. In particular, the TM region of GPCRs is where small molecule ligands (much more bioavailable than peptide ligands) typically bind to the receptors. In recent years nearly thirty distinct GPCR TM regions have been crystallized. However, there are more than 1,000 GPCRs, leaving the vast majority of GPCRs with limited structural information. Additionally, GPCRs are known to exist in a myriad of conformational states in the body, rendering the static x-ray crystal structures an incomplete reflection of GPCR structures. In order to obtain an ensemble of GPCR structures, we have developed the GEnSeMBLE procedure to rapidly sample a large number of variations of GPCR helix rotations and tilts. The lowest energy GEnSeMBLE structures are then docked to small molecule ligands and optimized. The GPCR family consists of five subfamilies with little to no sequence homology between them: class A, B1, B2, C, and Frizzled/Taste2. Almost all of the GPCR crystal structures have been of class A GPCRs, and much is known about their conserved interactions and binding sites. In this work we particularly focus on class B1 GPCRs, and aim to understand that family’s interactions and binding sites both to small molecules and their native peptide ligands. Specifically, we predict the full atom structure and peptide binding site of the glucagon-like peptide receptor and the TM region and small molecule binding sites for eight other class B1 GPCRs: CALRL, CRFR1, GIPR, GLR, PACR, PTH1R, VIPR1, and VIPR2. Our class B1 work reveals multiple conserved interactions across the B1 subfamily as well as a consistent small molecule binding site centrally located in the TM bundle. Both the interactions and the binding sites are distinct from those seen in the more well-characterized class A GPCRs, and as such our work provides a strong starting point for drug design targeting class B1 proteins. We also predict the full structure of CXCR4 bound to a small molecule, a class A GPCR that was not closely related to any of the class A GPCRs at the time of the work.
Resumo:
Detection of biologically relevant targets, including small molecules, proteins, DNA, and RNA, is vital for fundamental research as well as clinical diagnostics. Sensors with biological elements provide a natural foundation for such devices because of the inherent recognition capabilities of biomolecules. Electrochemical DNA platforms are simple, sensitive, and do not require complex target labeling or expensive instrumentation. Sensitivity and specificity are added to DNA electrochemical platforms when the physical properties of DNA are harnessed. The inherent structure of DNA, with its stacked core of aromatic bases, enables DNA to act as a wire via DNA-mediated charge transport (DNA CT). DNA CT is not only robust over long molecular distances of at least 34 nm, but is also especially sensitive to anything that perturbs proper base stacking, including DNA mismatches, lesions, or DNA-binding proteins that distort the π-stack. Electrochemical sensors based on DNA CT have previously been used for single-nucleotide polymorphism detection, hybridization assays, and DNA-binding protein detection. Here, improvements to (i) the structure of DNA monolayers and (ii) the signal amplification with DNA CT platforms for improved sensitivity and detection are described.
First, improvements to the control over DNA monolayer formation are reported through the incorporation of copper-free click chemistry into DNA monolayer assembly. As opposed to conventional film formation involving the self-assembly of thiolated DNA, copper-free click chemistry enables DNA to be tethered to a pre-formed mixed alkylthiol monolayer. The total amount of DNA in the final film is directly related to the amount of azide in the underlying alkylthiol monolayer. DNA monolayers formed with this technique are significantly more homogeneous and lower density, with a larger amount of individual helices exposed to the analyte solution. With these improved monolayers, significantly more sensitive detection of the transcription factor TATA binding protein (TBP) is achieved.
Using low-density DNA monolayers, two-electrode DNA arrays were designed and fabricated to enable the placement of multiple DNA sequences onto a single underlying electrode. To pattern DNA onto the primary electrode surface of these arrays, a copper precatalyst for click chemistry was electrochemically activated at the secondary electrode. The location of the secondary electrode relative to the primary electrode enabled the patterning of up to four sequences of DNA onto a single electrode surface. As opposed to conventional electrochemical readout from the primary, DNA-modified electrode, a secondary microelectrode, coupled with electrocatalytic signal amplification, enables more sensitive detection with spatial resolution on the DNA array electrode surface. Using this two-electrode platform, arrays have been formed that facilitate differentiation between well-matched and mismatched sequences, detection of transcription factors, and sequence-selective DNA hybridization, all with the incorporation of internal controls.
For effective clinical detection, the two working electrode platform was multiplexed to contain two complementary arrays, each with fifteen electrodes. This platform, coupled with low density DNA monolayers and electrocatalysis with readout from a secondary electrode, enabled even more sensitive detection from especially small volumes (4 μL per well). This multiplexed platform has enabled the simultaneous detection of two transcription factors, TBP and CopG, with surface dissociation constants comparable to their solution dissociation constants.
With the sensitivity and selectivity obtained from the multiplexed, two working electrode array, an electrochemical signal-on assay for activity of the human methyltransferase DNMT1 was incorporated. DNMT1 is the most abundant human methyltransferase, and its aberrant methylation has been linked to the development of cancer. However, current methods to monitor methyltransferase activity are either ineffective with crude samples or are impractical to develop for clinical applications due to a reliance on radioactivity. Electrochemical detection of methyltransferase activity, in contrast, circumvents these issues. The signal-on detection assay translates methylation events into electrochemical signals via a methylation-specific restriction enzyme. Using the two working electrode platform combined with this assay, DNMT1 activity from tumor and healthy adjacent tissue lysate were evaluated. Our electrochemical measurements revealed significant differences in methyltransferase activity between tumor tissue and healthy adjacent tissue.
As differential activity was observed between colorectal tumor tissue and healthy adjacent tissue, ten tumor sets were subsequently analyzed for DNMT1 activity both electrochemically and by tritium incorporation. These results were compared to expression levels of DNMT1, measured by qPCR, and total DNMT1 protein content, measured by Western blot. The only trend detected was that hyperactivity was observed in the tumor samples as compared to the healthy adjacent tissue when measured electrochemically. These advances in DNA CT-based platforms have propelled this class of sensors from the purely academic realm into the realm of clinically relevant detection.