13 resultados para oxidized glutathione

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biochemical responses of the enzymatic antioxidant system of a drought-tolerant cultivar (IACSP 94-2094) and a commercial cultivar in Brazil (IACSP 95-5000) grown under two levels of soil water restriction (70% and 30% Soil Available Water Content) were investigated. IACSP 94-2094 exhibited one additional active superoxide dismutase (Cu/Zn-SOD VI) isoenzyme in comparison to IACSP 95-5000, possibly contributing to the heightened response of IACSP 94-2094 to the induced stress. The total glutathione reductase (GR) activity increased substantially in IACSP 94-2094 under conditions of severe water stress; however, the appearance of a new GR isoenzyme and the disappearance of another isoenzyme were found not to be related to the stress response because the cultivars from both treatment groups (control and water restrictions) exhibited identical changes. Catalase (CAT) activity seems to have a more direct role in H2O2 detoxification under water stress condition and the shift in isoenzymes in the tolerant cultivar might have contributed to this response, which may be dependent upon the location where the excessive H2O2 is being produced under stress. The improved performance of IACSP 94-2094 under drought stress was associated with a more efficient antioxidant system response, particularly under conditions of mild stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lutein (LT) is a carotenoid obtained by diet and despite its antioxidant activity had been biochemically reported, few studies are available concerning its influence on the expression of antioxidant genes. The expression of 84 genes implicated in antioxidant defense was quantified using quantitative reverse transcription polymerase chain reaction array. DNA damage was measured by comet assay and glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) were quantified as biochemical parameters of oxidative stress in mouse kidney and liver. cDDP treatment reduced concentration of GSH and increased TBARS, parameters that were ameliorated in treatment associated with LT. cDDP altered the expression of 32 genes, increasing the expression of GPx2, APC, Nqo1 and CCs. LT changed the expression of 37 genes with an induction of 13 mainly oxygen transporters. In treatments associating cDDP and LT, 30 genes had their expression changed with a increase of the same genes of the cDDP treatment alone. These results suggest that LT might act scavenging reactive species and also inducing the expression of genes related to a better antioxidant response, highlighting the improvement of oxygen transport. This improved redox state of the cell through LT treatment could be related to the antigenotoxic and antioxidant effects observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uncoupling protein one (UCP1) is a mitochondrial inner membrane protein capable of uncoupling the electrochemical gradient from adenosine-5'-triphosphate (ATP) synthesis, dissipating energy as heat. UCP1 plays a central role in nonshivering thermogenesis in the brown adipose tissue (BAT) of hibernating animals and small rodents. A UCP1 ortholog also occurs in plants, and aside from its role in uncoupling respiration from ATP synthesis, thereby wasting energy, it plays a beneficial role in the plant response to several abiotic stresses, possibly by decreasing the production of reactive oxygen species (ROS) and regulating cellular redox homeostasis. However, the molecular mechanisms by which UCP1 is associated with stress tolerance remain unknown. Here, we report that the overexpression of UCP1 increases mitochondrial biogenesis, increases the uncoupled respiration of isolated mitochondria, and decreases cellular ATP concentration. We observed that the overexpression of UCP1 alters mitochondrial bioenergetics and modulates mitochondrial-nuclear communication, inducing the upregulation of hundreds of nuclear- and mitochondrial-encoded mitochondrial proteins. Electron microscopy analysis showed that these metabolic changes were associated with alterations in mitochondrial number, area and morphology. Surprisingly, UCP1 overexpression also induces the upregulation of hundreds of stress-responsive genes, including some involved in the antioxidant defense system, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione-S-transferase (GST). As a consequence of the increased UCP1 activity and increased expression of oxidative stress-responsive genes, the UCP1-overexpressing plants showed reduced ROS accumulation. These beneficial metabolic effects may be responsible for the better performance of UCP1-overexpressing lines in low pH, high salt, high osmolarity, low temperature, and oxidative stress conditions. Overexpression of UCP1 in the mitochondrial inner membrane induced increased uncoupling respiration, decreased ROS accumulation under abiotic stresses, and diminished cellular ATP content. These events may have triggered the expression of mitochondrial and stress-responsive genes in a coordinated manner. Because these metabolic alterations did not impair plant growth and development, UCP1 overexpression can potentially be used to create crops better adapted to abiotic stress conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Beta cell destruction in type 1 diabetes (TID) is associated with cellular oxidative stress and mitochondrial pathway of cell death. The aim of this study was to determine whether oxidative stress and mitochondrial dysfunction are present in T1D model (non-obese diabetic mouse, NOD) and if they are related to the stages of disease development. NOD mice were studied at three stages: non-diabetic, pre-diabetic, and diabetic and compared with age-matched Balb/c mice. Mitochondria respiration rates measured at phosphorylating and resting states in liver and soleus biopsies and in isolated liver mitochondria were similar in NOD and Balb/c mice at the three disease stages. However, NOD liver mitochondria were more susceptible to calcium-induced mitochondrial permeability transition as determined by cyclosporine-A-sensitive swelling and by decreased calcium retention capacity in all three stages of diabetes development. Mitochondria H2O2 production rate was higher in non-diabetic, but unaltered in pre-diabetic and diabetic NOD mice. The global cell reactive oxygen species (ROS), but not specific mitochondria ROS production, was significantly increased in NOD lymphomononuclear and stem cells in all disease stages. In addition, marked elevated rates of 2',7'-dichlorodihydrofluorescein (H2DCF) oxidation were observed in pancreatic islets from non-diabetic NOD mice. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) and lipidomic approach, we identified oxidized lipid markers in NOD liver mitochondria for each disease stage, most of them being derivatives of diacylglycerols and phospholipids. These results suggest that the cellular oxidative stress precedes the establishment of diabetes and may be the cause of mitochondrial dysfunction that is involved in beta cell death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TiO2 and TiO2/WO3 electrodes, irradiated by a solar simulator in configurations for heterogeneous photocatalysis (HP) and electrochemically-assisted HP (EHP), were used to remediate aqueous solutions containing 10 mg L(-1) (34 μmol L(-1)) of 17-α-ethinylestradiol (EE2), active component of most oral contraceptives. The photocatalysts consisted of 4.5 μm thick porous films of TiO2 and TiO2/WO3 (molar ratio W/Ti of 12%) deposited on transparent electrodes from aqueous suspensions of TiO2 particles and WO3 precursors, followed by thermal treatment at 450 (°)C. First, an energy diagram was organized with photoelectrochemical and UV-Vis absorption spectroscopy data and revealed that EE2 could be directly oxidized by the photogenerated holes at the semiconductor surfaces, considering the relative HOMO level for EE2 and the semiconductor valence band edges. Also, for the irradiated hybrid photocatalyst, electrons in TiO2 should be transferred to WO3 conduction band, while holes move toward TiO2 valence band, improving charge separation. The remediated EE2 solutions were analyzed by fluorescence, HPLC and total organic carbon measurements. As expected from the energy diagram, both photocatalysts promoted the EE2 oxidation in HP configuration; after 4 h, the EE2 concentration decayed to 6.2 mg L(-1) (35% of EE2 removal) with irradiated TiO2 while TiO2/WO3 electrode resulted in 45% EE2 removal. A higher performance was achieved in EHP systems, when a Pt wire was introduced as a counter-electrode and the photoelectrodes were biased at +0.7 V; then, the EE2 removal corresponded to 48 and 54% for the TiO2 and TiO2/WO3, respectively. The hybrid TiO2/WO3, when compared to TiO2 electrode, exhibited enhanced sunlight harvesting and improved separation of photogenerated charge carriers, resulting in higher performance for removing this contaminant of emerging concern from aqueous solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leaves of Passiflora alata Curtis were characterized for their antioxidant capacity. Antioxidant analyses of DPPH, FRAP, ABTS, ORAC and phenolic compounds were made in three different extracts: aqueous, methanol/acetone and ethanol. Aqueous extract was found to be the best solvent for recovery of phenolic compounds and antioxidant activity, when compared with methanol/acetone and ethanol. To study the anti-inflammatory properties of this extract in experimental type 1 diabetes, NOD mice were divided into two groups: the P. alata group, treated with aqueous extract of P. alata Curtis, and a non-treated control group, followed by diabetes expression analysis. The consumption of aqueous extract and water ad libitum lasted 28 weeks. The treated-group presented a decrease in diabetes incidence, a low quantity of infiltrative cells in pancreatic islets and increased glutathione in the kidney and liver (p<0.05), when compared with the diabetic and non-diabetic control-groups. In conclusion, our results suggest that the consumption of aqueous extract of P. alata may be considered a good source of natural antioxidants and compounds found in its composition can act as anti-inflammatory agents, helping in the control of diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent data suggests that cholesteryl ester transfer protein (CETP) activity may interact with acute stress conditions via inflammatory-oxidative response and thrombogenesis. We investigated this assumption in patients with ST-elevation myocardial infarction (STEMI). Consecutive patients with STEMI (n = 116) were enrolled <24-h of symptoms onset and were followed for 180 days. Plasma levels of C-reactive protein (CRP), interleukin-2 (IL-2), tumor necrosis factor (TNFα), 8-isoprostane, nitric oxide (NOx) and CETP activity were measured at enrollment (D1) and at fifth day (D5). Flow-mediated dilation (FMD) was assessed by ultrasound and coronary thrombus burden (CTB) was evaluated by angiography. Neither baseline nor the change of CETP activity from D1 to D5 was associated with CRP, IL-2, TNFα, 8-isoprostane levels or CTB. The rise in NOx from D1 to D5 was inferior [3.5(-1; 10) vs. 5.5(-1; 12); p < 0.001] and FMD was lower [5.9(5.5) vs. 9.6(6.6); p = 0.047] in patients with baseline CETP activity above the median value than in their counterparts. Oxidized HDL was measured by thiobarbituric acid reactive substances (TBARS) in isolated HDL particles and increased from D1 to D5, and remaining elevated at D30. The change in TBARS content in HDL was associated with CETP activity (r = 0.72; p = 0.014) and FMD (r = -0.61; p = 0.046). High CETP activity at admission was associated with the incidence of sudden death and recurrent MI at 30 days (OR 12.8; 95% CI 1.25-132; p = 0.032) and 180 days (OR 3.3; 95% CI 1.03-10.7; p = 0.044). An enhanced CETP activity during acute phase of STEMI is independently associated with endothelial dysfunction and adverse clinical outcome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isatin, an indole alkaloid has been shown to have anti-microbial, anti-tumor and anti-inflammatory effects. Due to its findings, we evaluated whether this alkaloid would have any effect on TNBS-induced colitis. Animals (male Unib:WH rats, aged 8 weeks old) were induced colitis through a rectal administration of 2,4,6-trinitrobenzene sulphonic acid using a catheter inserted 8 cm into the rectum of the animals. The rats were divided into two major groups: non-colitic and colitic. The colitic group was sub-divided into 6 groups (10 animals per group): colitic non-treated, Isatin 3; 6; 12.5; 18.75 and 25 mg/kg. Our main results showed that the oral treatment with Isatin 6 and 25 mg/kg were capable of avoiding the increase in TNF-α, COX-2 and PGE₂ levels when compared to the colitic non-treated group. Interestingly, the same doses (6 and 25 mg/kg) were also capable of preventing the decrease in IL-10 levels comparing with the colitic non-treated group. The levels of MPO, (an indirect indicator of neutrophil presence), were also maintained lower than those of the colitic non-treated group. Isatin also prevented the decrease of SOD activity and increase of GSH-Px and GSH-Rd activity as well as the depletion of GSH levels. In conclusion, both pre-treatments (6 and 25 mg/kg) were capable of protecting the gut mucosa against the injury caused by TNBS, through the combination of antioxidant and anti-inflammatory properties, which, together, showed a protective activity of the indole alkaloid Isatin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herein, we provide new contribution to the mechanisms involved in keratinocytes response to hyperosmotic shock showing, for the first time, the participation of Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP) activity in this event. We reported that sorbitol-induced osmotic stress mediates alterations in the phosphorylation of pivotal cytoskeletal proteins, particularly Src and cofilin. Furthermore, an increase in the expression of the phosphorylated form of LMWPTP, which was followed by an augment in its catalytic activity, was observed. Of particular importance, these responses occurred in an intracellular milieu characterized by elevated levels of reduced glutathione (GSH) and increased expression of the antioxidant enzymes glutathione peroxidase and glutathione reductase. Altogether, our results suggest that hyperosmostic stress provides a favorable cellular environment to the activation of LMWPTP, which is associated with increased expression of antioxidant enzymes, high levels of GSH and inhibition of Src kinase. Finally, the real contribution of LMWPTP in the hyperosmotic stress response of keratinocytes was demonstrated through analysis of the effects of ACP1 gene knockdown in stressed and non-stressed cells. LMWPTP knockdown attenuates the effects of sorbitol induced-stress in HaCaT cells, mainly in the status of Src kinase, Rac and STAT5 phosphorylation and activity. These results describe for the first time the participation of LMWPTP in the dynamics of cytoskeleton rearrangement during exposure of human keratinocytes to hyperosmotic shock, which may contribute to cell death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the past few decades, the textile industry has significantly increased investment in research to develop functional fabrics, with a special focus on those aggregating values. Such fabrics can exploit microparticles inferior to 100 μm, such as those made by complex coacervation in their creation. The antimicrobial properties of chitosan can be attributed to these microparticles. Developing particles with uniform structure and properties would facilitate the control for the eventual release of the core material. Thus, a complex coacervation between gelatin and chitosan was studied, and the optimal conditions were replicated in the encapsulation of limonene. Spherical particles formed had an average diameter (D3,2) of 30 μm and were prepared with 89.7% efficiency. Cross-linking of these microparticles using glutaraldehyde and tripolyphosphate was carried out before spray drying. After drying, microparticles cross-linked with glutaraldehyde were oxidized and clustered and those that were cross-linked with tripolyphosphate resisted drying and presented a high yield.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review here the chemistry of reactive oxygen and nitrogen species, their biological sources and targets; particularly, biomolecules implicated in the redox balance of the human blood, and appraise the analytical methods available for their detection and quantification. Those biomolecules are represented by the enzymatic antioxidant defense machinery, whereas coadjutant reducing protection is provided by several low molecular weight molecules. Biomolecules can be injured by RONS yielding a large repertoire of oxidized products, some of which can be taken as biomarkers of oxidative damage. Their reliable determination is of utmost interest for their potentiality in diagnosis, prevention and treatment of maladies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glutathione (GSH) and related enzymes are pivotal for the normal functioning of several important biological processes. In this review we discuss the biosynthesis and the catalytic cycles of glutathione as well as the major GSH-related enzymes. We also present how glutathione and enzymes are involved in cancer and the chromatographic and non-chromatographic methods used to analyze glutathione and/or its derivatives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of aluminum (Al) on the activities of antioxidant enzymes and ferritin expression were studied in cell suspension cultures of two varieties of Coffea arabica, Mundo Novo and Icatu, in medium with pH at 5.8. The cells were incubated with 300 µM Al3+, and the Al speciation as Al3+ was 1.45% of the mole fraction. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) were increased in Mundo Novo, whereas glutathione reductase (GR) and guaiacol peroxidase (GPOX) activities remained unchanged. SOD, GR, and GST activities were increased in Icatu, while CAT activity was not changed, and GPOX activity decreased. The expression of two ferritin genes (CaFer1 and CaFer2) were analyzed by Real-Time PCR. Al caused a downregulation of CaFER1 expression and no changes of CaFER2 expression in both varieties. The Western blot showed no alteration in ferritin protein levels in Mundo Novo and a decrease in Icatu. The differential enzymes responses indicate that the response to Al is variety-dependent.