35 resultados para natural language understanding
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Mine drainage is an important environmental disturbance that affects the chemical and biological components in natural resources. However, little is known about the effects of neutral mine drainage on the soil bacteria community. Here, a high-throughput 16S rDNA pyrosequencing approach was used to evaluate differences in composition, structure, and diversity of bacteria communities in samples from a neutral drainage channel, and soil next to the channel, at the Sossego copper mine in Brazil. Advanced statistical analyses were used to explore the relationships between the biological and chemical data. The results showed that the neutral mine drainage caused changes in the composition and structure of the microbial community, but not in its diversity. The Deinococcus/Thermus phylum, especially the Meiothermus genus, was in large part responsible for the differences between the communities, and was positively associated with the presence of copper and other heavy metals in the environmental samples. Other important parameters that influenced the bacterial diversity and composition were the elements potassium, sodium, nickel, and zinc, as well as pH. The findings contribute to the understanding of bacterial diversity in soils impacted by neutral mine drainage, and demonstrate that heavy metals play an important role in shaping the microbial population in mine environments.
Resumo:
Collection of triatomines in domestic, peridomestic and sylvatic environments in states of Bahia and Rio Grande do Sul, Northeastern and Southern Brazil respectively, and isolation of Trypanosoma cruzi strains. First, the captured triatomines were identified using insect identification keys, then their intestinal content was examined by abdominal compression, and the samples containing trypanosomatid forms were inoculated in LIT medium and Swiss mice. Six triatomine species were collected in cities in Bahia, namely Panstrongylus geniculatus (01), Triatoma melanocephala (11), T. lenti (94), T. pseudomaculata (02), T. sherlocki (26) and T. sordida (460), and two in cities in Rio Grande do Sul, namely T. circummaculata (11) and T. rubrovaria (115). Out of the specimens examined, T. cruzi was isolated from 28 triatomine divided into four different species: T. melanocephala (one), T. lenti (one), T. rubrovaria (16) and T. sordida (10). Their index of natural infection by T. cruzi was 6.4%. The isolation of T. cruzi strains from triatomines found in domestic and peridomestic areas shows the potential risk of transmission of Chagas disease in the studied cities. The maintenance of those T. cruzi strains in laboratory is intended to promote studies that facilitate the understanding of the parasite-vector-host relationship.
Resumo:
The Brazilian Atlantic Forest hosts one of the world's most diverse and threatened tropical forest biota. In many ways, its history of degradation describes the fate experienced by tropical forests around the world. After five centuries of human expansion, most Atlantic Forest landscapes are archipelagos of small forest fragments surrounded by open-habitat matrices. This 'natural laboratory' has contributed to a better understanding of the evolutionary history and ecology of tropical forests and to determining the extent to which this irreplaceable biota is susceptible to major human disturbances. We share some of the major findings with respect to the responses of tropical forests to human disturbances across multiple biological levels and spatial scales and discuss some of the conservation initiatives adopted in the past decade. First, we provide a short description of the Atlantic Forest biota and its historical degradation. Secondly, we offer conceptual models describing major shifts experienced by tree assemblages at local scales and discuss landscape ecological processes that can help to maintain this biota at larger scales. We also examine potential plant responses to climate change. Finally, we propose a research agenda to improve the conservation value of human-modified landscapes and safeguard the biological heritage of tropical forests.
Resumo:
Frailty and anemia in the elderly appear to share a common pathophysiology associated with chronic inflammatory processes. This study uses an analytical, cross-sectional, population-based methodology to investigate the probable relationships between frailty, red blood cell parameters and inflammatory markers in 255 community-dwelling elders aged 65 years or older. The frailty phenotype was assessed by non-intentional weight loss, fatigue, low grip strength, low energy expenditure and reduced gait speed. Blood sample analyses were performed to determine hemoglobin level, hematocrit and reticulocyte count, as well as the inflammatory variables IL-6, IL-1ra and hsCRP. In the first multivariate analysis (model I), considering only the erythroid parameters, Hb concentration was a significant variable for both general frailty status and weight loss: a 1.0g/dL drop in serum Hb concentration represented a 2.02-fold increase (CI 1.12-3.63) in an individual's chance of being frail. In the second analysis (model II), which also included inflammatory cytokine levels, hsCRP was independently selected as a significant variable. Each additional year of age represented a 1.21-fold increase in the chance of being frail, and each 1-unit increase in serum hsCRP represented a 3.64-fold increase in the chance of having the frailty phenotype. In model II reticulocyte counts were associated with weight loss and reduced metabolic expenditure criteria. Our findings suggest that reduced Hb concentration, reduced RetAbs count and elevated serum hsCRP levels should be considered components of frailty, which in turn is correlated with sarcopenia, as evidenced by weight loss.
Resumo:
This article is a commentary on the experiences that motivated my decision to become a human ecologist and ethnobiologist. These experiences include the pleasure of studying and of having the sense of being within nature, as well as the curiosity towards understanding the world and minds of local people. In particular, such understanding could be driven by addressing the challenging questions that originate in the interactions of such individuals with their natural surroundings. I have been particularly interested in the sea and the riverine forests that are inhabited by coastal or riverine small-scale fishers. Sharing the distinctive world of these fishers enjoyably incited my curiosity and challenged me to understand why fishers and their families 'do as they do' for their livelihoods including their beliefs. This challenge involved understanding the rationality (or the arguments or views) that underlies the decisions these individuals make in their interaction with nature. This curiosity was fundamental to my career choice, as were a number of reading interests. These reading interests included political economy and philosophy; evolution and sociobiology; evolutionary, human, and cultural ecology; cultural transmission; fisheries; local knowledge; ecological economics; and, naturally, ethnobiology.
Resumo:
Jute fiber is the second most common natural cellulose fiber worldwide, especially in recent years, due to its excellent physical, chemical and structural properties. The objective of this paper was to investigate: the thermal degradation of in natura jute fiber, and the production and characterization of the generated activated carbon. The production consisted of carbonization of the jute fiber and activation with steam. During the activation step the amorphous carbon produced in the initial carbonization step reacted with oxidizing gas, forming new pores and opening closed pores, which enhanced the adsorptive capacity of the activated carbon. N2 gas adsorption at 77K was used in order to evaluate the effect of the carbonization and activation steps. The results of the adsorption indicate the possibility of producing a porous material with a combination of microporous and mesoporous structure, depending on the parameters used in the processes, with resulting specific surface area around 470 m2.g-1. The thermal analysis indicates that above 600°C there is no significant mass loss.
Resumo:
The human mitochondrial Hsp70, also called mortalin, is of considerable importance for mitochondria biogenesis and the correct functioning of the cell machinery. In the mitochondrial matrix, mortalin acts in the importing and folding process of nucleus-encoded proteins. The in vivo deregulation of mortalin expression and/or function has been correlated with age-related diseases and certain cancers due to its interaction with the p53 protein. In spite of its critical biological roles, structural and functional studies on mortalin are limited by its insoluble recombinant production. This study provides the first report of the production of folded and soluble recombinant mortalin when co-expressed with the human Hsp70-escort protein 1, but it is still likely prone to self-association. The monomeric fraction of mortalin presented a slightly elongated shape and basal ATPase activity that is higher than that of its cytoplasmic counterpart Hsp70-1A, suggesting that it was obtained in the functional state. Through small angle X-ray scattering, we assessed the low-resolution structural model of monomeric mortalin that is characterized by an elongated shape. This model adequately accommodated high resolution structures of Hsp70 domains indicating its quality. We also observed that mortalin interacts with adenosine nucleotides with high affinity. Thermally induced unfolding experiments indicated that mortalin is formed by at least two domains and that the transition is sensitive to the presence of adenosine nucleotides and that this process is dependent on the presence of Mg2+ ions. Interestingly, the thermal-induced unfolding assays of mortalin suggested the presence of an aggregation/association event, which was not observed for human Hsp70-1A, and this finding may explain its natural tendency for in vivo aggregation. Our study may contribute to the structural understanding of mortalin as well as to contribute for its recombinant production for antitumor compound screenings.
Resumo:
Polymeric nanoparticles have been developed for several applications, among them as carrier system of pesticides. However, few studies have investigated the fate of these materials in the environment in relation to colloidal stability and toxicity. In nature, humic substances are the main agents responsible for complexation with metals and organic compounds, as well as responsible for the dynamics of these nanoparticles in aquatic and terrestrial environments. In this context, the evaluation of the influence of aquatic humic substances (AHS) on the colloidal stability and toxicity of polymeric nanoparticles of chitosan/tripolyphosphate with or without paraquat was performed. In this study, the nanoparticles were prepared by the ionic gelation method and characterized by size distribution measurements (DLS and NTA), zeta potential, infrared and fluorescence spectroscopy. Allium cepa genotoxicity studies and ecotoxicity assays with the alga Pseudokirchneriella subcapitata were used to investigate the effect of aquatic humic substances (AHS) on the toxicity of this delivery system. No changes were observed in the physical-chemical stability of the nanoparticles due to the presence of AHS using DLS and NTA techniques. However some evidence of interaction between the nanoparticles and AHS was observed by infrared and fluorescence spectroscopies. The ecotoxicity and genotoxicity assays showed that humic substances can decrease the toxic effects of nanoparticles containing paraquat. These results are interesting because they are important for understanding the interaction of these nanostructured carrier systems with species present in aquatic ecosystems such as humic substances, and in this way, opening new perspectives for studies on the dynamics of these carrier systems in the ecosystem.
Resumo:
Growth in the development and production of engineered nanoparticles (ENPs) in recent years has increased the potential for interactions of these nanomaterials with aquatic and terrestrial environments. Carefully designed studies are therefore required in order to understand the fate, transport, stability, and toxicity of nanoparticles. Natural organic matter (NOM), such as the humic substances found in water, sediment, and soil, is one of the substances capable of interacting with ENPs. This review presents the findings of studies of the interaction of ENPs and NOM, and the possible effects on nanoparticle stability and the toxicity of these materials in the environment. In addition, ENPs and NOM are utilized for many different purposes, including the removal of metals and organic compounds from effluents, and the development of new electronic sensors and other devices for the detection of active substances. Discussion is therefore provided of some of the ways in which NOM can be used in the production of nanoparticles. Although there has been an increase in the number of studies in this area, further progress is needed to improve understanding of the dynamic interactions between ENPs and NOM.
Resumo:
The development of technological routes to convert lignocellulosic biomass to liquid fuels requires an in-depth understanding of the cell wall architecture of substrates. Essential pretreatment processes are conducted to reduce biomass recalcitrance and usually increase the reactive surface area. Quantitative three-dimensional information about both bulk and surface structural features of substrates needs to be obtained to expand our knowledge of substrates. In this work, phase-contrast tomography (PCT) was used to gather information about the structure of a model lignocellulosic biomass (piassava fibers). The three-dimensional cellular organization of piassava fibers was characterized by PCT using synchrotron radiation. This technique enabled important physical features that describe the substrate piassava fibers to be visualized and quantified. The external surface area of a fiber and internal surface area of the pores in a fiber could be determined separately. More than 96% of the overall surface area available to enzymes was in the bulk substrate. The pore surface area and length exhibited a positive linear relationship, where the slope of this relationship depended on the plant tissue. We demonstrated that PCT is a powerful tool for the three-dimensional characterization of the cell wall features related to biomass recalcitrance. Original and relevant quantitative information about the structural features of the analyzed material were obtained. The data obtained by PCT can be used to improve processing routes to efficiently convert biomass feedstock into sugars.
Resumo:
Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample representativeness, and minimizing the effect of the presence of contaminants.
Resumo:
Inductively Coupled Plasma Optical Emission Spectrometry was used to determine Ca, Mg, Mn, Fe, Zn and Cu in samples of processed and natural coconut water. The sample preparation consisted in a filtration step followed by a dilution. The analysis was made employing optimized instrumental parameters and the results were evaluated using methods of Pattern Recognition. The data showed common concentration values for the analytes present in processed and natural samples. Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) indicated that the samples of different kinds were statistically different when the concentrations of all the analytes were considered simultaneously.
Resumo:
Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Secondary metabolites from Curvularia eragrostidis and Drechslera dematioidea, Clusia sp. floral resin, alkaloids from Pilocarpus alatus, salicylideneanilines, piperidine amides, the amine 1-cinnamylpiperazine and chiral pyridinium salts were assayed on Mycobacterium tuberculosis H37Rv. N-(salicylidene)-2-hydroxyaniline was the most effective compound with a minimal inhibitory concentration (MIC) of 8 µmol/L. Dihydrocurvularin was moderately effective with a MIC of 40 µmol/L. Clusia sp. floral resin and a gallocatechin-epigallocatechin mixture showed MIC of 0.02 g/L and 38 µmol/L, respectively. The cytotoxicity was evaluated for N-(salicylidene)-2-hydroxyaniline, curvularin, dihydrocurvularin and Clusia sp. floral resin, and the selectivity indexes were > 125, 0.47, 0.75 and 5, respectively.
Resumo:
Approximately 7.2% of the Atlantic rainforest remains in Brazil, with only 16% of this forest remaining in the State of Rio de Janeiro, all of it distributed in fragments. This forest fragmentation can produce biotic and abiotic differences between edges and the fragment interior. In this study, we compared the structure and richness of tree communities in three habitats - an anthropogenic edge (AE), a natural edge (NE) and the fragment interior (FI) - of a fragment of Atlantic forest in the State of Rio de Janeiro, Brazil (22°50'S and 42°28'W). One thousand and seventy-six trees with a diameter at breast height > 4.8 cm, belonging to 132 morphospecies and 39 families, were sampled in a total study area of 0.75 ha. NE had the greatest basal area and the trees in this habitat had the greatest diameter:height allometric coefficient, whereas AE had a lower richness and greater variation in the height of the first tree branch. Tree density, diameter, height and the proportion of standing dead trees did not differ among the habitats. There was marked heterogeneity among replicates within each habitat. These results indicate that the forest interior and the fragment edges (natural or anthropogenic) do not differ markedly considering the studied parameters. Other factors, such as the age from the edge, type of matrix and proximity of gaps, may play a more important role in plant community structure than the proximity from edges.
Resumo:
The objectives of this work was to estimate the number of soil subsamples considering the classical statistics and geostatistics and determine the spatial variability of soil fertility attributes of an Ultisol, with clay texture, in an area of regenerating natural vegetation in Alegre - ES. Soil samples were collected in a depth of 0.0-0.2 m, at the crossing points of a regular grid, comprising a total of 64 points located at 10 m-intervals. The area presented low fertility soil. Considering a variation of 5% around the mean in the classic statistics, it is necessary a larger number of samples in relation to geostatistics. All the chemical attributes showed moderate to high spatial dependence, except for the effective cation exchange capacity (CECe), which showed pure nugget effect. The spherical semivariogram model gave the best fit to the data. Isoline maps allowed visualizing the differentiated spatial distribution of the contents of soil chemical attributes.