10 resultados para Total petroleum hydrocarbons
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
In this work the archaea and eubacteria community of a hypersaline produced water from the Campos Basin that had been transported and discharged to an onshore storage facility was evaluated by 16S recombinant RNA (rRNA) gene sequence analysis. The produced water had a hypersaline salt content of 10 (w/v), had a carbon oxygen demand (COD) of 4,300 mg/l and contains phenol and other aromatic compounds. The high salt and COD content and the presence of toxic phenolic compounds present a problem for conventional discharge to open seawater. In previous studies, we demonstrated that the COD and phenolic content could be largely removed under aerobic conditions, without dilution, by either addition of phenol degrading Haloarchaea or the addition of nutrients alone. In this study our goal was to characterize the microbial community to gain further insight into the persistence of reservoir community members in the produced water and the potential for bioremediation of COD and toxic contaminants. Members of the archaea community were consistent with previously identified communities from mesothermic reservoirs. All identified archaea were located within the phylum Euryarchaeota, with 98 % being identified as methanogens while 2 % could not be affiliated with any known genus. Of the identified archaea, 37 % were identified as members of the strictly carbon-dioxide-reducing genus Methanoplanus and 59 % as members of the acetoclastic genus Methanosaeta. No Haloarchaea were detected, consistent with the need to add these organisms for COD and aromatic removal. Marinobacter and Halomonas dominated the eubacterial community. The presence of these genera is consistent with the ability to stimulate COD and aromatic removal with nutrient addition. In addition, anaerobic members of the phyla Thermotogae, Firmicutes, and unclassified eubacteria were identified and may represent reservoir organisms associated with the conversion hydrocarbons to methane.
Resumo:
Bacillus safensis is a microorganism recognized for its biotechnological and industrial potential due to its interesting enzymatic portfolio. Here, as a means of gathering information about the importance of this species in oil biodegradation, we report a draft genome sequence of a strain isolated from petroleum.
Resumo:
Negative-ion mode electrospray ionization, ESI(-), with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was coupled to a Partial Least Squares (PLS) regression and variable selection methods to estimate the total acid number (TAN) of Brazilian crude oil samples. Generally, ESI(-)-FT-ICR mass spectra present a power of resolution of ca. 500,000 and a mass accuracy less than 1 ppm, producing a data matrix containing over 5700 variables per sample. These variables correspond to heteroatom-containing species detected as deprotonated molecules, [M - H](-) ions, which are identified primarily as naphthenic acids, phenols and carbazole analog species. The TAN values for all samples ranged from 0.06 to 3.61 mg of KOH g(-1). To facilitate the spectral interpretation, three methods of variable selection were studied: variable importance in the projection (VIP), interval partial least squares (iPLS) and elimination of uninformative variables (UVE). The UVE method seems to be more appropriate for selecting important variables, reducing the dimension of the variables to 183 and producing a root mean square error of prediction of 0.32 mg of KOH g(-1). By reducing the size of the data, it was possible to relate the selected variables with their corresponding molecular formulas, thus identifying the main chemical species responsible for the TAN values.
Resumo:
Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.
Resumo:
Bacterial strains and metagenomic clones, both obtained from petroleum reservoirs, were evaluated for petroleum degradation abilities either individually or in pools using seawater microcosms for 21 days. Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS) analyses were carried out to evaluate crude oil degradation. The results showed that metagenomic clones 1A and 2B were able to biodegrade n-alkanes (C14 to C33) and isoprenoids (phytane and pristane), with rates ranging from 31% to 47%, respectively. The bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 showed higher rates reaching 99% after 21 days. The metagenomic clone pool biodegraded these compounds at rates ranging from 11% to 45%. Regarding aromatic compound biodegradation, metagenomic clones 2B and 10A were able to biodegrade up to 94% of phenanthrene and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 55% to 70% after 21 days, while the bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 were able to biodegrade 63% and up to 99% of phenanthrene, respectively, and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 23% to 99% after 21 days. In this work, isolated strains as well as metagenomic clones were capable of degrading several petroleum compounds, revealing an innovative strategy and a great potential for further biotechnological and bioremediation applications.
Resumo:
The aim of this study was to compare the performance of the following techniques on the isolation of volatiles of importance for the aroma/flavor of fresh cashew apple juice: dynamic headspace analysis using PorapakQ(®) as trap, solvent extraction with and without further concentration of the isolate, and solid-phase microextraction (fiber DVB/CAR/PDMS). A total of 181 compounds were identified, from which 44 were esters, 20 terpenes, 19 alcohols, 17 hydrocarbons, 15 ketones, 14 aldehydes, among others. Sensory evaluation of the gas chromatography effluents revealed esters (n = 24) and terpenes (n = 10) as the most important aroma compounds. The four techniques were efficient in isolating esters, a chemical class of high impact in the cashew aroma/flavor. However, the dynamic headspace methodology produced an isolate in which the analytes were in greater concentration, which facilitates their identification (gas chromatography-mass spectrometry) and sensory evaluation in the chromatographic effluents. Solvent extraction (dichloromethane) without further concentration of the isolate was the most efficient methodology for the isolation of terpenes. Because these two techniques also isolated in greater concentration the volatiles from other chemical classes important to the cashew aroma, such as aldehydes and alcohols, they were considered the most advantageous for the study of cashew aroma/flavor.
Resumo:
Primary X-ray spectra were measured in the range of 80-150kV in order to validate a computer program based on a semiempirical model. The ratio between the characteristic and total air Kerma was considered to compare computed results and experimental data. Results show that the experimental spectra have higher first HVL and mean energy than the calculated ones. The ratios between the characteristic and total air Kerma for calculated spectra are in good agreement with experimental results for all filtrations used.
Resumo:
A stereoselective total synthesis of (-)-cryptocaryol A () is described. Key features of the 17-step route include the use of three boron-mediated aldol reaction-reduction sequences to control all stereocenters and an Ando modification of the Horner-Wadsworth-Emmons olefination that permitted the installation of the Z double bond of the α-pyrone ring.
Resumo:
In this work a fast method for the determination of the total sugar levels in samples of raw coffee was developed using the near infrared spectroscopy technique and multivariate regression. The sugar levels were initially obtained using gravimety as the reference method. Later on, the regression models were built from the near infrared spectra of the coffee samples. The original spectra were pre-treated according to the Kubelka-Munk transformation and multiplicative signal correction. The proposed analytical method made possible the direct determination of the total sugar levels in the samples with an error lower by 8% with respect to the conventional methodology.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are a group of compounds that have been the subject of much concern due to their toxic potential. In this study, margarine?s, vegetable cream and mayonnaise available on the Brazilian market were analyzed for pyrene, chrysene, benzo(a)pyrene, benzo(b)fluoranthene and dibenzo(a,h)anthracene. The analytical methodology involved liquid-liquid extraction, clean-up on silica gel column and determination by high performance liquid chromatography using fluorescence detector. Variable levels of contamination were found within differents brands of the same product and within differents batches of the same brand. The total PAH content was in the range of 4.1 to 7.1mug/kg in vegetable cream, 1.7 to 3.9mug/kg in margarine and 1.0 to 21.7mug/kg in mayonnaise. In general the products which according to the label contain corn oil showed the highest levels of contamination. Based on these results and on the importance of fat, oils and derived products for the intake of PAHs, it is recommended that producers of margarine, vegetable creams and mayonnaise start to control the contamination of the vegetable oils used in the elaboration of these products, in order to reduce the exposure of consumers to excessive amounts of potentially carcinogenic compounds.