3 resultados para Total and thermotolerant coliforms

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the sleep bruxism, malocclusions, orofacial dysfunctions and salivary levels of cortisol and alpha-amylase in asthmatic children. 108 7-9-yr-old children were selected from Policlinic Santa Teresinha Doutor Antonio Haddad Dib (asthmatics, n=53) and from public schools (controls, n=55), Piracicaba, SP, Brazil. Sleep bruxism diagnosis was confirmed by parental report of grinding sounds and the presence of shiny and polish facets on incisors and/or first permanent molars. The index of orthodontic treatment need was used for occlusion evaluation. Orofacial dysfunctions were evaluated using the nordic orofacial test-screening (NOT-S). Salivary cortisol and alpha-amylase were expressed as awakening response (AR), calculated as the difference between levels immediately after awakening and 30min after waking, and diurnal decline (DD), calculated as the difference between levels at 30min after waking and at bedtime. Data were analyzed using Shapiro-Wilk/Kolmogorov-Smirnov, Chi-square, unpaired t test/Mann-Whitney and paired t/Wilcoxon tests. Sleep bruxism was more prevalent in children with asthma than controls (47.2% vs. 27.3%, p<0.05). Asthmatics had higher scores of NOT-S total and interview (p<0.05). Dysfunctions on sensory function and chewing and swallowing were more frequent in asthmatics (p<0.05). Salivary cortisol AR on weekend was significantly higher for asthmatics (p<0.05). Salivary cortisol DD was significantly higher on weekday than weekend for controls (p<0.05). There were no significant differences in alpha-amylase values in and between groups. The presence of asthma in children was associated with sleep bruxism, negative perception of sensory, chewing and swallowing functions, and higher concentrations of salivary cortisol on weekend.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nutrients composition, phenolic compounds, antioxidant activity and estimated glycemic index (EGI) were evaluated in sorghum bran (SB) and decorticated sorghum flour (DSF), obtained by a rice-polisher, as well as whole sorghum flour (WSF). Correlation between EGI and the studied parameters were determined. SB presented the highest protein, lipid, ash, β-glucan, total and insoluble dietary fiber contents; and the lowest non-resistant and total starch contents. The highest carbohydrate and resistant starch contents were in DSF and WSF, respectively. Phenolic compounds and antioxidant activities were concentrated in SB. The EGI values were: DSF 84.5±0.41; WSF 77.2±0.33; and SB 60.3±0.78. Phenolic compounds, specific flavonoids and antioxidant activities, as well as total, insoluble and soluble dietary fiber and β-glucans of sorghum flour samples were all negatively correlated to EGI. RS content was not correlated to EGI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Congenital diaphragmatic hernia (CDH) is associated with pulmonary hypertension which is often difficult to manage, and a significant cause of morbidity and mortality. In this study, we have used a rabbit model of CDH to evaluate the effects of BAY 60-2770 on the in vitro reactivity of left pulmonary artery. CDH was performed in New Zealand rabbit fetuses (n = 10 per group) and compared to controls. Measurements of body, total and left lung weights (BW, TLW, LLW) were done. Pulmonary artery rings were pre-contracted with phenylephrine (10 μM), after which cumulative concentration-response curves to glyceryl trinitrate (GTN; NO donor), tadalafil (PDE5 inhibitor) and BAY 60-2770 (sGC activator) were obtained as well as the levels of NO (NO3/NO2). LLW, TLW and LBR were decreased in CDH (p < 0.05). In left pulmonary artery, the potency (pEC50) for GTN was markedly lower in CDH (8.25 ± 0.02 versus 9.27 ± 0.03; p < 0.01). In contrast, the potency for BAY 60-2770 was markedly greater in CDH (11.7 ± 0.03 versus 10.5 ± 0.06; p < 0.01). The NO2/NO3 levels were 62 % higher in CDH (p < 0.05). BAY 60-2770 exhibits a greater potency to relax the pulmonary artery in CDH, indicating a potential use for pulmonary hypertension in this disease.