3 resultados para MATLAB SIMULATION
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
In this work, the energy response functions of a CdTe detector were obtained by Monte Carlo (MC) simulation in the energy range from 5 to 160keV, using the PENELOPE code. In the response calculations the carrier transport features and the detector resolution were included. The computed energy response function was validated through comparison with experimental results obtained with (241)Am and (152)Eu sources. In order to investigate the influence of the correction by the detector response at diagnostic energy range, x-ray spectra were measured using a CdTe detector (model XR-100T, Amptek), and then corrected by the energy response of the detector using the stripping procedure. Results showed that the CdTe exhibits good energy response at low energies (below 40keV), showing only small distortions on the measured spectra. For energies below about 80keV, the contribution of the escape of Cd- and Te-K x-rays produce significant distortions on the measured x-ray spectra. For higher energies, the most important correction is the detector efficiency and the carrier trapping effects. The results showed that, after correction by the energy response, the measured spectra are in good agreement with those provided by a theoretical model of the literature. Finally, our results showed that the detailed knowledge of the response function and a proper correction procedure are fundamental for achieving more accurate spectra from which quality parameters (i.e., half-value layer and homogeneity coefficient) can be determined.
Resumo:
This work approaches the forced air cooling of strawberry by numerical simulation. The mathematical model that was used describes the process of heat transfer, based on the Fourier's law, in spherical coordinates and simplified to describe the one-dimensional process. For the resolution of the equation expressed for the mathematical model, an algorithm was developed based on the explicit scheme of the numerical method of the finite differences and implemented in the scientific computation program MATLAB 6.1. The validation of the mathematical model was made by the comparison between theoretical and experimental data, where strawberries had been cooled with forced air. The results showed to be possible the determination of the convective heat transfer coefficient by fitting the numerical and experimental data. The methodology of the numerical simulations was showed like a promising tool in the support of the decision to use or to develop equipment in the area of cooling process with forced air of spherical fruits.
Resumo:
The physical model was based on the method of Newton-Euler. The model was developed by using the scientific computer program Mathematica®. Several simulations where tried varying the progress speeds (0.69; 1.12; 1.48; 1.82 and 2.12 m s-1); soil profiles (sinoidal, ascending and descending ramp) and height of the profile (0.025 and 0.05 m) to obtain the normal force of soil reaction. After the initial simulations, the mechanism was optimized using the scientific computer program Matlab® having as criterion (function-objective) the minimization of the normal force of reaction of the profile (FN). The project variables were the lengths of the bars (L1y, L2, l3 and L4), height of the operation (L7), the initial length of the spring (Lmo) and the elastic constant of the spring (k t). The lack of robustness of the mechanism in relation to the variable height of the operation was outlined by using a spring with low rigidity and large length. The results demonstrated that the mechanism optimized showed better flotation performance in relation to the initial mechanism.