26 resultados para Lead-free solid solutions
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Lipidic mixtures present a particular phase change profile highly affected by their unique crystalline structure. However, classical solid-liquid equilibrium (SLE) thermodynamic modeling approaches, which assume the solid phase to be a pure component, sometimes fail in the correct description of the phase behavior. In addition, their inability increases with the complexity of the system. To overcome some of these problems, this study describes a new procedure to depict the SLE of fatty binary mixtures presenting solid solutions, namely the Crystal-T algorithm. Considering the non-ideality of both liquid and solid phases, this algorithm is aimed at the determination of the temperature in which the first and last crystal of the mixture melts. The evaluation is focused on experimental data measured and reported in this work for systems composed of triacylglycerols and fatty alcohols. The liquidus and solidus lines of the SLE phase diagrams were described by using excess Gibbs energy based equations, and the group contribution UNIFAC model for the calculation of the activity coefficients of both liquid and solid phases. Very low deviations of theoretical and experimental data evidenced the strength of the algorithm, contributing to the enlargement of the scope of the SLE modeling.
Resumo:
In this review recent methods developed and applied to solve criminal occurences related to documentoscopy, ballistic and drugs of abuse are discussed. In documentoscopy, aging of ink writings, the sequence of line crossings and counterfeiting of documents are aspects to be solved with reproducible, fast and non-destructive methods. In ballistic, the industries are currently producing ''lead-free'' or ''nontoxic'' handgun ammunitions, so new methods of gunshot residues characterization are being presented. For drugs analysis, easy ambient sonic-spray ionization mass spectrometry (EASI-MS) is shown to provide a relatively simple and selective screening tool to distinguish m-CPP and amphetamines (MDMA) tablets, cocaine and LSD.
Resumo:
Protocols for the generation of dendritic cells (DCs) using serum as a supplementation of culture media leads to reactions due to animal proteins and disease transmissions. Several types of serum-free media (SFM), based on good manufacture practices (GMP), have recently been used and seem to be a viable option. The aim of this study was to evaluate the results of the differentiation, maturation, and function of DCs from Acute Myeloid Leukemia patients (AML), generated in SFM and medium supplemented with autologous serum (AS). DCs were analyzed by phenotype characteristics, viability, and functionality. The results showed the possibility of generating viable DCs in all the conditions tested. In patients, the X-VIVO 15 medium was more efficient than the other media tested in the generation of DCs producing IL-12p70 (p=0.05). Moreover, the presence of AS led to a significant increase of IL-10 by DCs as compared with CellGro (p=0.05) and X-Vivo15 (p=0.05) media, both in patients and donors. We concluded that SFM was efficient in the production of DCs for immunotherapy in AML patients. However, the use of AS appears to interfere with the functional capacity of the generated DCs.
Resumo:
Insulin was used as model protein to developed innovative Solid Lipid Nanoparticles (SLNs) for the delivery of hydrophilic biotech drugs, with potential use in medicinal chemistry. SLNs were prepared by double emulsion with the purpose of promoting stability and enhancing the protein bioavailability. Softisan(®)100 was selected as solid lipid matrix. The surfactants (Tween(®)80, Span(®)80 and Lipoid(®)S75) and insulin were chosen applying a 2(2) factorial design with triplicate of central point, evaluating the influence of dependents variables as polydispersity index (PI), mean particle size (z-AVE), zeta potential (ZP) and encapsulation efficiency (EE) by factorial design using the ANOVA test. Therefore, thermodynamic stability, polymorphism and matrix crystallinity were checked by Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD), whereas the effect of toxicity of SLNs was check in HepG2 and Caco-2 cells. Results showed a mean particle size (z-AVE) width between 294.6 nm and 627.0 nm, a PI in the range of 0.425-0.750, ZP about -3 mV, and the EE between 38.39% and 81.20%. After tempering the bulk lipid (mimicking the end process of production), the lipid showed amorphous characteristics, with a melting point of ca. 30 °C. The toxicity of SLNs was evaluated in two distinct cell lines (HEPG-2 and Caco-2), showing to be dependent on the concentration of particles in HEPG-2 cells, while no toxicity in was reported in Caco-2 cells. SLNs were stable for 24 h in in vitro human serum albumin (HSA) solution. The resulting SLNs fabricated by double emulsion may provide a promising approach for administration of protein therapeutics and antigens.
Resumo:
Neglected agricultural products (NAPs) are defined as discarded material in agricultural production. Corn cobs are a major waste of agriculture maize. Here, a methanolic extract from corn cobs (MEC) was obtained. MEC contains phenolic compounds, protein, carbohydrates (1.4:0.001:0.001). We evaluated the in vitro and in vivo antioxidant potential of MEC. Furthermore, its antiproliferative property against tumor cells was assessed through MTT assays and proteins related to apoptosis in tumor cells were examined by western blot. MEC showed no hydroxyl radical scavenger capacity, but it showed antioxidant activity in Total Antioxidant Capacity and DPPH scavenger ability assays. MEC showed higher Reducing Power than ascorbic acid and exhibited high Superoxide Scavenging activity. In tumor cell culture, MEC increased catalase, metallothionein and superoxide dismutase expression in accordance with the antioxidant tests. In vivo antioxidant test, MEC restored SOD and CAT, decreased malondialdehyde activities and showed high Trolox Equivalent Antioxidant Capacity in animals treated with CCl4. Furthermore, MEC decreased HeLa cells viability by apoptosis due an increase of Bax/Bcl-2 ratio, caspase 3 active. Protein kinase C expression increased was also detected in treated tumor cells. Thus, our findings pointed out the biotechnological potential of corn cobs as a source of molecules with pharmacological activity.
Resumo:
Cardiac arrest during heart surgery is a common procedure and allows the surgeon to perform surgical procedures in an environment free of blood and movement. Using a model of isolated rat heart, the authors compare a new cardioplegic solution containing histidine-tryptophan-glutamate (group 2) with the histidine-tryptophan-alphacetoglutarate (group 1) routinely used by some cardiac surgeons. To assess caspase, IL-8 and KI-67 in isolated rat hearts using immunohistochemistry. 20 Wistar male rats were anesthetized and heparinized. The chest was opened, cardioctomy was performed and 40 ml/kg of the appropriate cardioplegic solution was infused. The hearts were kept for 2 hours at 4ºC in the same solution, and thereafter, placed in the Langendorff apparatus for 30 minutes with Ringer-Locke solution. Immunohistochemistry analysis of caspase, IL-8, and KI-67 were performed. The concentration of caspase was lower in group 2 and Ki-67 was higher in group 2, both P<0.05. There was no statistical difference between the values of IL-8 between the groups. Histidine-tryptophan-glutamate solution was better than histidine-tryptophan-alphacetoglutarate solution because it reduced caspase (apoptosis), increased KI-67 (cell proliferation), and showed no difference in IL-8 levels compared to group 1. This suggests that the histidine-tryptophan-glutamate solution was more efficient than the histidine-tryptophan-alphacetoglutarate for the preservation of hearts of rat cardiomyocytes.
Resumo:
The reconstruction of the external ear to correct congenital deformities or repair following trauma remains a significant challenge in reconstructive surgery. Previously, we have developed a novel approach to create scaffold-free, tissue engineering elastic cartilage constructs directly from a small population of donor cells. Although the developed constructs appeared to adopt the structural appearance of native auricular cartilage, the constructs displayed limited expression and poor localization of elastin. In the present study, the effect of growth factor supplementation (insulin, IGF-1, or TGF-β1) was investigated to stimulate elastogenesis as well as to improve overall tissue formation. Using rabbit auricular chondrocytes, bioreactor-cultivated constructs supplemented with either insulin or IGF-1 displayed increased deposition of cartilaginous ECM, improved mechanical properties, and thicknesses comparable to native auricular cartilage after 4 weeks of growth. Similarly, growth factor supplementation resulted in increased expression and improved localization of elastin, primarily restricted within the cartilaginous region of the tissue construct. Additional studies were conducted to determine whether scaffold-free engineered auricular cartilage constructs could be developed in the 3D shape of the external ear. Isolated auricular chondrocytes were grown in rapid-prototyped tissue culture molds with additional insulin or IGF-1 supplementation during bioreactor cultivation. Using this approach, the developed tissue constructs were flexible and had a 3D shape in very good agreement to the culture mold (average error <400 µm). While scaffold-free, engineered auricular cartilage constructs can be created with both the appropriate tissue structure and 3D shape of the external ear, future studies will be aimed assessing potential changes in construct shape and properties after subcutaneous implantation.
Resumo:
Plackett-Burman experimental design was applied for the robustness assessment of GC×GC-qMS (Comprehensive Two-Dimensional Gas Chromatography with Fast Quadrupolar Mass Spectrometric Detection) in quantitative and qualitative analysis of volatiles compounds from chocolate samples isolated by headspace solid-phase microextraction (HS-SPME). The influence of small changes around the nominal level of six factors deemed as important on peak areas (carrier gas flow rate, modulation period, temperature of ionic source, MS photomultiplier power, injector temperature and interface temperature) and of four factors considered as potentially influential on spectral quality (minimum and maximum limits of the scanned mass ranges, ions source temperature and photomultiplier power). The analytes selected for the study were 2,3,5-trimethylpyrazine, 2-octanone, octanal, 2-pentyl-furan, 2,3,5,6-tetramethylpyrazine, and 2-nonanone e nonanal. The factors pointed out as important on the robustness of the system were photomultiplier power for quantitative analysis and lower limit of mass scanning range for qualitative analysis.
Resumo:
Super elastic nitinol (NiTi) wires were exploited as highly robust supports for three distinct crosslinked polymeric ionic liquid (PIL)-based coatings in solid-phase microextraction (SPME). The oxidation of NiTi wires in a boiling (30%w/w) H2O2 solution and subsequent derivatization in vinyltrimethoxysilane (VTMS) allowed for vinyl moieties to be appended to the surface of the support. UV-initiated on-fiber copolymerization of the vinyl-substituted NiTi support with monocationic ionic liquid (IL) monomers and dicationic IL crosslinkers produced a crosslinked PIL-based network that was covalently attached to the NiTi wire. This alteration alleviated receding of the coating from the support, which was observed for an analogous crosslinked PIL applied on unmodified NiTi wires. A series of demanding extraction conditions, including extreme pH, pre-exposure to pure organic solvents, and high temperatures, were applied to investigate the versatility and robustness of the fibers. Acceptable precision of the model analytes was obtained for all fibers under these conditions. Method validation by examining the relative recovery of a homologous group of phthalate esters (PAEs) was performed in drip-brewed coffee (maintained at 60 °C) by direct immersion SPME. Acceptable recoveries were obtained for most PAEs in the part-per-billion level, even in this exceedingly harsh and complex matrix.
Resumo:
The essential oil from the leaves of Ocimum kilimandscharicum (EOOK), collected in Dourados-MS, was investigated for anticancer, anti-inflammatory and antioxidant activity and chemical composition. The essential oil was extracted by hydrodistillation, and the chemical composition was performed by gas chromatography-mass spectrometry. The essential oil was evaluated for free radical-scavenging activity using the DPPH assay and was tested in an anticancer assay against ten human cancer cell lines. The response parameter (GI50) was calculated for the cell lines tested. The anti-inflammatory activity was evaluated using carrageenan-induced pleurisy in mice. The chemical composition showed 45 components with a predominance of monoterpenes, such as camphor (51.81%), 1,8 cineole (20.13%) and limonene (11.23%). The EOOK exhibited potent free radical-scavenging activity by the DPPH assay with a GI50 of 8.31 μg/ml. The major constituents, pure camphor (IC50=12.56 μg/ml) and mixture of the limonene: 1, 8 cineole (IC50=23.25 μg/ml) displayed a potent activity. The oral administration of EOOK (at 30 and 100 mg kg(-1)), as well as the pure camphor or a mixture of 1,8 cineole with limonene, significantly inhibited the carrageenan (Cg) induced pleurisy, reducing the migration of total leukocytes in mice by 82 ± 4% (30 mg kg(-1) of EOOK), 95 ± 4% (100 mg kg(-1) of EOOK), 83 ± 9% (camphor) and 80 ± 5% (mixture of 1,8 cineole:limonene 1:1). In vitro cytotoxicity screening against a human ovarian cancer cell line displayed high selectivity and potent anticancer activity with GI50=31.90 mg ml(-1). This work describes the anti-inflammatory, anticancer and antioxidant effects of EOOK for the first time. The essential oil exhibited marked anti-inflammatory, antioxidant and anticancer effects, an effect that can be attributed the presence of majorital compounds, and the response profiles from chemical composition differed from other oils collected in different locales.
Resumo:
This study evaluated the corrosion kinetics and surface topography of Ti-6Al-4V alloy exposed to mouthwash solutions (0.12% chlorhexidine digluconate, 0.053% cetylpyridinium chloride and 3% hydrogen peroxide) compared to artificial saliva (pH6.5) (control). Twenty Ti-6Al-4V alloy disks were used and divided into 4 groups (n=5). For the electrochemical assay, standard tests as open circuit potential and electrochemical impedance spectroscopy (EIS) were applied at baseline, 7 and 14days after immersion in the solutions. Scanning electron microscopy, atomic force microscopy and profilometry (average roughness - Ra) were used for surface characterization. Total weight loss of disks was calculated. Data were analyzed by ANOVA and Bonferroni's test (α=0.05). Hydrogen peroxide generated the lowest polarization resistance (Rp) values for all periods (P<0.05). For the capacitance (Cdl), similar results were observed among groups at baseline (P=0.098). For the 7 and 14-day periods, hydrogen peroxide promoted the highest Cdl values (P<0.0001). Hydrogen peroxide promoted expressive superficial changes and greater Ra values than the others (P<0.0001). It could be concluded that solutions containing cetylpyridinium chloride and chlorhexidine digluconate might be the mouthwashes of choice during the post-operatory period of dental implants. However, hydrogen peroxide is counter-indicated in these situations. Further studies evaluating the dynamics of these solutions (tribocorrosion) and immersing the disks in daily cycles (two or three times a day) to mimic a clinical situation closest to the application of mouthwashes in the oral cavity are warranted to prove our results.
Resumo:
We assessed associations between steroid receptors including: estrogen-alpha, estrogen-beta, androgen receptor, progesterone receptor, the HER2 status and triple-negative epithelial ovarian cancer (ERα-/PR-/HER2-; TNEOC) status and survival in women with epithelial ovarian cancer. The study included 152 women with primary epithelial ovarian cancer. The status of steroid receptor and HER2 was determined by immunohistochemistry. Disease-free and overall survival were calculated and compared with steroid receptor and HER2 status as well as clinicopathological features using the Cox Proportional Hazards model. A mean follow-up period of 43.6 months (interquartile range=41.4 months) was achieved where 44% of patients had serous tumor, followed by mucinous (23%), endometrioid (9%), mixed (9%), undifferentiated (8.5%) and clear cell tumors (5.3%). ER-alpha staining was associated with grade II-III tumors. Progesterone receptor staining was positively associated with a Body Mass Index≥25. Androgen receptor positivity was higher in serous tumors. In stand-alone analysis of receptor contribution to survival, estrogen-alpha positivity was associated with greater disease-free survival. However, there was no significant association between steroid receptor expression, HER2 status, or TNEOC status, and overall survival. Although estrogen-alpha, androgen receptor, progesterone receptor and the HER2 status were associated with key clinical features of the women and pathological characteristics of the tumors, these associations were not implicated in survival. Interestingly, women with TNEOC seem to fare the same way as their counterparts with non-TNEOC.
Resumo:
Transfer of reaction products formed on the surfaces of two mutually rubbed dielectric solids makes an important if not dominating contribution to triboelectricity. New evidence in support of this statement is presented in this report, based on analytical electron microscopy coupled to electrostatic potential mapping techniques. Mechanical action on contacting surface asperities transforms them into hot-spots for free-radical formation, followed by electron transfer producing cationic and anionic polymer fragments, according to their electronegativity. Polymer ions accumulate creating domains with excess charge because they are formed at fracture surfaces of pulled-out asperities. Another factor for charge segregation is the low polymer mixing entropy, following Flory and Huggins. The formation of fractal charge patterns that was previously described is thus the result of polymer fragment fractal scatter on both contacting surfaces. The present results contribute to the explanation of the centuries-old difficulties for understanding the triboelectric series and triboelectricity in general, as well as the dissipative nature of friction, and they may lead to better control of friction and its consequences.
Resumo:
Solid lipid nanoparticles (SLNs) have been proposed in the 1990s as appropriate drug delivery systems, and ever since they have been applied in a wide variety of cosmetic and pharmaceutical applications. In addition, SLNs are considered suitable alternatives as carriers in gene delivery. Although important advances have been made in this particular field, fundamental knowledge of the underlying mechanisms of SLN-mediated gene delivery is conspicuously lacking, an imperative requirement in efforts aimed at further improving their efficiency. Here, we address recent advances in the use of SLNs as platform for delivery of nucleic acids as therapeutic agents. In addition, we will discuss available technology for conveniently producing SLNs. In particular, we will focus on underlying molecular mechanisms by which SLNs and nucleic acids assemble into complexes and how the nucleic acid cargo may be released intracellularly. In discussing underlying mechanisms, we will, when appropriate, refer to analogous studies carried out with systems based on cationic lipids and polymers, that have proven useful in the assessment of structure-function relationships. Finally, we will give suggestions for improving SLN-based gene delivery systems, by pointing to alternative methods for SLNplex assembly, focusing on the realization of a sustained nucleic acid release.
Resumo:
A versatile and metal-free approach for the synthesis of carbocycles and of heterocycles bearing seven- and eight-membered rings is described. The strategy is based on ring expansion of 1-vinylcycloalkanols (or the corresponding silyl or methyl ether) mediated by the hypervalent iodine reagent HTIB (PhI(OH)OTs). Reaction conditions can be easily adjusted to give ring expansion products bearing different functional groups. A route to medium-ring lactones was also developed.