38 resultados para Interesting
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
The current dominance of African runners in long-distance running is an intriguing phenomenon that highlights the close relationship between genetics and physical performance. Many factors in the interesting interaction between genotype and phenotype (eg, high cardiorespiratory fitness, higher hemoglobin concentration, good metabolic efficiency, muscle fiber composition, enzyme profile, diet, altitude training, and psychological aspects) have been proposed in the attempt to explain the extraordinary success of these runners. Increasing evidence shows that genetics may be a determining factor in physical and athletic performance. But, could this also be true for African long-distance runners? Based on this question, this brief review proposed the role of genetic factors (mitochondrial deoxyribonucleic acid, the Y chromosome, and the angiotensin-converting enzyme and the alpha-actinin-3 genes) in the amazing athletic performance observed in African runners, especially the Kenyans and Ethiopians, despite their environmental constraints.
Resumo:
Hsp90 is a molecular chaperone essential for cell viability in eukaryotes that is associated with the maturation of proteins involved in important cell functions and implicated in the stabilization of the tumor phenotype of various cancers, making this chaperone a notably interesting therapeutic target. Celastrol is a plant-derived pentacyclic triterpenoid compound with potent antioxidant, anti-inflammatory and anticancer activities; however, celastrol's action mode is still elusive. In this work, we investigated the effect of celastrol on the conformational and functional aspects of Hsp90α. Interestingly, celastrol appeared to target Hsp90α directly as the compound induced the oligomerization of the chaperone via the C-terminal domain as demonstrated by experiments using a deletion mutant. The nature of the oligomers was investigated by biophysical tools demonstrating that a two-fold excess of celastrol induced the formation of a decameric Hsp90α bound throughout the C-terminal domain. When bound, celastrol destabilized the C-terminal domain. Surprisingly, standard chaperone functional investigations demonstrated that neither the in vitro chaperone activity of protecting against aggregation nor the ability to bind a TPR co-chaperone, which binds to the C-terminus of Hsp90α, were affected by celastrol. Celastrol interferes with specific biological functions of Hsp90α. Our results suggest a model in which celastrol binds directly to the C-terminal domain of Hsp90α causing oligomerization. However, the ability to protect against protein aggregation (supported by our results) and to bind to TPR co-chaperones are not affected by celastrol. Therefore celastrol may act primarily by inducing specific oligomerization that affects some, but not all, of the functions of Hsp90α. To the best of our knowledge, this study is the first work to use multiple probes to investigate the effect that celastrol has on the stability and oligomerization of Hsp90α and on the binding of this chaperone to Tom70. This work provides a novel mechanism by which celastrol binds Hsp90α.
Resumo:
Spider venoms contain neurotoxic peptides aimed at paralyzing prey or for defense against predators; that is why they represent valuable tools for studies in neuroscience field. The present study aimed at identifying the process of internalization that occurs during the increased trafficking of vesicles caused by Phoneutria nigriventer spider venom (PNV)-induced blood-brain barrier (BBB) breakdown. Herein, we found that caveolin-1α is up-regulated in the cerebellar capillaries and Purkinje neurons of PNV-administered P14 (neonate) and 8- to 10-week-old (adult) rats. The white matter and granular layers were regions where caveolin-1α showed major upregulation. The variable age played a role in this effect. Caveolin-1 is the central protein that controls caveolae formation. Caveolar-specialized cholesterol- and sphingolipid-rich membrane sub-domains are involved in endocytosis, transcytosis, mechano-sensing, synapse formation and stabilization, signal transduction, intercellular communication, apoptosis, and various signaling events, including those related to calcium handling. PNV is extremely rich in neurotoxic peptides that affect glutamate handling and interferes with ion channels physiology. We suggest that the PNV-induced BBB opening is associated with a high expression of caveolae frame-forming caveolin-1α, and therefore in the process of internalization and enhanced transcytosis. Caveolin-1α up-regulation in Purkinje neurons could be related to a way of neurons to preserve, restore, and enhance function following PNV-induced excitotoxicity. The findings disclose interesting perspectives for further molecular studies of the interaction between PNV and caveolar specialized membrane domains. It proves PNV to be excellent tool for studies of transcytosis, the most common form of BBB-enhanced permeability.
Resumo:
Despite the increasing understanding of female reproduction, the molecular diagnosis of primary ovarian insufficiency (POI) is seldom obtained. The RNA-binding protein NANOS3 poses as an interesting candidate gene for POI since members of the Nanos family have an evolutionarily conserved function in germ cell development and maintenance by repressing apoptosis. We performed mutational analysis of NANOS3 in a cohort of 85 Brazilian women with familial or isolated POI, presenting with primary or secondary amenorrhea, and in ethnically-matched control women. A homozygous p.Glu120Lys mutation in NANOS3 was identified in two sisters with primary amenorrhea. The substituted amino acid is located within the second C2HC motif in the conserved zinc finger domain of NANOS3 and in silico molecular modelling suggests destabilization of protein-RNA interaction. In vitro analyses of apoptosis through flow cytometry and confocal microscopy show that NANOS3 capacity to prevent apoptosis was impaired by this mutation. The identification of an inactivating missense mutation in NANOS3 suggests a mechanism for POI involving increased primordial germ cells (PGCs) apoptosis during embryonic cell migration and highlights the importance of NANOS proteins in human ovarian biology.
Resumo:
Bacillus safensis is a microorganism recognized for its biotechnological and industrial potential due to its interesting enzymatic portfolio. Here, as a means of gathering information about the importance of this species in oil biodegradation, we report a draft genome sequence of a strain isolated from petroleum.
Resumo:
Balsamic vinegar (BV) is a typical and valuable Italian product, worldwide appreciated thanks to its characteristic flavors and potential health benefits. Several studies have been conducted to assess physicochemical and microbial compositions of BV, as well as its beneficial properties. Due to highly-disseminated claims of antioxidant, antihypertensive and antiglycemic properties, BV is a known target for frauds and adulterations. For that matter, product authentication, certifying its origin (region or country) and thus the processing conditions, is becoming a growing concern. Striving for fraud reduction as well as quality and safety assurance, reliable analytical strategies to rapidly evaluate BV quality are very interesting, also from an economical point of view. This work employs silica plate laser desorption/ionization mass spectrometry (SP-LDI-MS) for fast chemical profiling of commercial BV samples with protected geographical indication (PGI) and identification of its adulterated samples with low-priced vinegars, namely apple, alcohol and red/white wines.
Resumo:
In this study, a novel concise series of molecules based on the structure of goniothalamin (1) was synthesized and evaluated against a highly metastatic human pancreatic cancer cell line (Panc-1). Among them, derivative 8 displayed a low IC50 value (2.7 μM) and its concentration for decreasing colony formation was 20-fold lower than goniothalamin (1). Both compounds reduced the levels of the receptor tyrosine kinase (AXL) and cyclin D1 which are known to be overexpressed in pancreatic cancer cells. Importantly, despite the fact that goniothalamin (1) and derivative 8 caused pancreatic cancer cell cycle arrest and cell death, only derivative 8 was able to downregulate pro-survival and proliferation pathways mediated by mitogen activated protein kinase ERK1/2. Another interesting finding was that Panc-1 cells treated with derivative 8 displayed a strong decrease in the transcription factor (c-Myc), hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) protein levels. Notably, the molecular effects caused by derivative 8 might not be related to ROS generation, since no significant production of ROS was observed in low concentrations of this compound (from 1.5 up to 3 μM). Therefore, the downregulation of important mediators of pancreatic cancer aggressiveness by derivative 8 reveals its great potential for the development of new chemotherapeutic agents for pancreatic cancer treatment.
Resumo:
Paper has become increasingly recognized as a very interesting substrate for the construction of microfluidic devices, with potential application in a variety of areas, including health diagnosis, environmental monitoring, immunoassays and food safety. The aim of this review is to present a short history of analytical systems constructed from paper, summarize the main advantages and disadvantages of fabrication techniques, exploit alternative methods of detection such as colorimetric, electrochemical, photoelectrochemical, chemiluminescence and electrochemiluminescence, as well as to take a closer look at the novel achievements in the field of bioanalysis published during the last 2 years. Finally, the future trends for production of such devices are discussed.
Resumo:
Polymeric nanoparticles have been developed for several applications, among them as carrier system of pesticides. However, few studies have investigated the fate of these materials in the environment in relation to colloidal stability and toxicity. In nature, humic substances are the main agents responsible for complexation with metals and organic compounds, as well as responsible for the dynamics of these nanoparticles in aquatic and terrestrial environments. In this context, the evaluation of the influence of aquatic humic substances (AHS) on the colloidal stability and toxicity of polymeric nanoparticles of chitosan/tripolyphosphate with or without paraquat was performed. In this study, the nanoparticles were prepared by the ionic gelation method and characterized by size distribution measurements (DLS and NTA), zeta potential, infrared and fluorescence spectroscopy. Allium cepa genotoxicity studies and ecotoxicity assays with the alga Pseudokirchneriella subcapitata were used to investigate the effect of aquatic humic substances (AHS) on the toxicity of this delivery system. No changes were observed in the physical-chemical stability of the nanoparticles due to the presence of AHS using DLS and NTA techniques. However some evidence of interaction between the nanoparticles and AHS was observed by infrared and fluorescence spectroscopies. The ecotoxicity and genotoxicity assays showed that humic substances can decrease the toxic effects of nanoparticles containing paraquat. These results are interesting because they are important for understanding the interaction of these nanostructured carrier systems with species present in aquatic ecosystems such as humic substances, and in this way, opening new perspectives for studies on the dynamics of these carrier systems in the ecosystem.
Resumo:
Sunlight exposure causes several types of injury to humans, especially on the skin; among the most common harmful effects due to ultraviolet (UV) exposure are erythema, pigmentation and lesions in DNA, which may lead to cancer. These long-term effects are minimized with the use of sunscreens, a class of cosmetic products that contains UV filters as the main component in the formulation; such molecules can absorb, reflect or diffuse UV rays, and can be used alone or as a combination to broaden the protection on different wavelengths. Currently, worldwide regulatory agencies define which ingredients and what quantities must be used in each country, and enforce companies to conduct tests that confirm the Sun Protection Factor (SPF) and the UVA (Ultraviolet A) factor. Standard SPF determination tests are currently conducted in vivo, using human subjects. In an industrial mindset, apart from economic and ethical reasons, the introduction of an in vitro method emerges as an interesting alternative by reducing risks associated to UV exposure on tests, as well as providing assertive analytical results. The present work aims to describe a novel methodology for SPF determination directly from sunscreen formulations using the previously described cosmetomics platform and mass spectrometry as the analytical methods of choice.
Resumo:
We report a combined study of external pressure and Cu-substitution on BaFe2As2 single crystals grown by the in-flux technique. At ambient pressure, the Cu-substitution is known to suppress the spin density wave (SDW) phase in pure BaFe2As2(TSDW ≈ 140 K) and to induce a superconducting (SC) dome with a maximum transition temperature [Formula: see text]. This [Formula: see text] is much lower than the Tc ∼ 15-28 K achieved in the case of Ru, Ni and Co substitutions. Such a lower Tc is attributed to a Cu(2+) magnetic pair-breaking effect. The latter is strongly suppressed by applied pressure, as shown herein, Tc can be significantly enhanced by applying high pressures. In this work, we investigated the pressure effects on Cu(2+) magnetic pair-breaking in the BaFe2-xCuxAs2 series. Around the optimal concentration (xopd = 0.11), all samples showed a substantial increase of Tc as a function of pressure. Yet for those samples with a slightly higher doping level (over-doped regime), Tc presented a dome-like shape with maximum Tc ≃ 8 K. Remarkably interesting, the under-doped samples, e.g. x = 0.02 display a maximum pressure induced Tc ≃ 30 K which is comparable to the maximum Tc's found for the pure compound under external pressures. Furthermore, the magnetoresistance effect as a function of pressure in the normal state of the x = 0.02 sample also presented an evolution consistent with the screening of the Cu(2+) local moments. These findings demonstrate that the Cu(2+) magnetic pair-breaking effect is completely suppressed by applying pressure in the low concentration regime of Cu(2+) substituted BaFe2As2.
Resumo:
Neks are serine-threonine kinases that are similar to NIMA, a protein found in Aspergillus nidulans which is essential for cell division. In humans there are eleven Neks which are involved in different biological functions besides the cell cycle control. Nek4 is one of the largest members of the Nek family and has been related to the primary cilia formation and in DNA damage response. However, its substrates and interaction partners are still unknown. In an attempt to better understand the role of Nek4, we performed an interactomics study to find new biological processes in which Nek4 is involved. We also described a novel Nek4 isoform which lacks a region of 46 amino acids derived from an insertion of an Alu sequence and showed the interactomics profile of these two Nek4 proteins. Isoform 1 and isoform 2 of Nek4 were expressed in human cells and after an immunoprecipitation followed by mass spectrometry, 474 interacting proteins were identified for isoform 1 and 149 for isoform 2 of Nek4. About 68% of isoform 2 potential interactors (102 proteins) are common between the two Nek4 isoforms. Our results reinforce Nek4 involvement in the DNA damage response, cilia maintenance and microtubule stabilization, and raise the possibility of new functional contexts, including apoptosis signaling, stress response, translation, protein quality control and, most intriguingly, RNA splicing. We show for the first time an unexpected difference between both Nek4 isoforms in RNA splicing control. Among the interacting partners, we found important proteins such as ANT3, Whirlin, PCNA, 14-3-3ε, SRSF1, SRSF2, SRPK1 and hNRNPs proteins. This study provides new insights into Nek4 functions, identifying new interaction partners and further suggests an interesting difference between isoform 1 and isoform 2 of this kinase. Nek4 isoform 1 may have similar roles compared to other Neks and these roles are not all preserved in isoform 2. Besides, in some processes, both isoforms showed opposite effects, indicating a possible fine controlled regulation.
Resumo:
Recently, to obtain lipids from microalgae has been the object of extensive research, since it is viewed as a promising feedstock for biodiesel production, especially when compared with crops such as soybean and sunflower, in terms of theoretical performance. The reduction of nutrient availability in culture media, especially nitrogen, stresses the microorganisms and affects cell growth, thus inducing lipid accumulation. This is an interesting step in biodiesel feedstock obtention from microalgae and should be better understood. In this study, four levels of nitrogen concentration in the BG-11 culture medium were evaluated in the growth of the chlorophycean microalga Desmodesmus sp. Both cell growth and lipid content were monitored over 7 days of cultivation, which yielded a final cell density of 33 × 10(6) cells mL(-1) with an initial NaNO3 concentration of 750 mg L(-1) in the medium and a maximum lipid content of 23 % with total nitrogen starvation. It was observed that the microalgae presented high lipid accumulation in the fourth day of cultivation with nitrogen starvation, although with moderate cell growth.
Resumo:
Cutinases (EC 3.1.1.74) are also known as cutin hidrolases. These enzymes share catalytic properties of lipases and esterases, presenting a unique feature of being active regardless the presence of an oil-water interface, making them interesting as biocatalysts in several industrial processes involving hydrolysis, esterification and trans-esterification reactions. They are also active in different reaction media, allowing their applications in different areas such as food industry, cosmetics, fine chemicals, pesticide and insecticide degradation, treatment and laundry of fiber textiles and polymer chemistry. The present review describes the characteristics, potential applications and new perspectives for these enzymes.
Resumo:
Homo and heterotrinuclear acetates are unique compounds having μ3-oxo bridge and many interesting properties of such compounds are derived from this structure. Some undergraduate inorganic textbooks discuss several aspects of these compounds and we present here an undergraduate experiment for the high-yield synthesis of [Fe2MO(CH3CO2)6(H 2O)3], with M = Fe3+, Co2+ and Ni2+, as well as their characterization using infrared spectroscopy and cyclic voltametry. The proposed experiment gives the opportunity to discuss several concepts of coordination chemistry that follow the characterization techniques, such as: types of acetate coordination, reversibility of electrochemical processes, quelate and trans effects and lability.