2 resultados para Eosinophilic gastroenteritis
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Staphylococcus aureus aggravates the allergic eosinophilic inflammation. We hypothesized that Staphylococcus aureus-derived enterotoxins directly affect eosinophil functions. Therefore, this study investigated the effects of Staphylococcal enterotoxins A and B (SEA and SEB) on human and mice eosinophil chemotaxis and adhesion in vitro, focusing on p38 MAPK phosphorylation and intracellular Ca(2+) mobilization. Eosinophil chemotaxis was evaluated using a microchemotaxis chamber, whereas adhesion was performed in VCAM-1 and ICAM-1-coated plates. Measurement of p38 MAPK phosphorylation and intracellular Ca(2+) levels were monitored by flow cytometry and fluorogenic calcium-binding dye, respectively. Prior incubation (30 to 240 min) of human blood eosinophils with SEA (0.5 to 3 ng/ml) significantly reduced eotaxin-, PAF- and RANTES-induced chemotaxis (P<0.05). Likewise, SEB (1 ng/ml, 30 min) significantly reduced eotaxin-induced human eosinophil chemotaxis (P<0.05). The reduction of eotaxin-induced human eosinophil chemotaxis by SEA and SEB was prevented by anti-MHC monoclonal antibody (1 μg/ml). In addition, SEA and SEB nearly suppressed the eotaxin-induced human eosinophil adhesion in ICAM-1- and VCAM-1-coated plates. SEA and SEB prevented the increases of p38 MAPK phosphorylation and Ca(2+) levels in eotaxin-activated human eosinophils. In separate protocols, we evaluated the effects of SEA on chemotaxis and adhesion of eosinophils obtained from mice bone marrow. SEA (10 ng/ml) significantly reduced the eotaxin-induced chemotaxis along with cell adhesion to both ICAM-1 and VCAM-1-coated plates (P<0.05). In conclusion, the inhibition by SEA and SEB of eosinophil functions (chemotaxis and adhesion) are associated with reductions of p38 MAPK phosphorylation and intracellular Ca(2+) mobilization.
Resumo:
A 6 month-old mulatto boy was admitted on account of acute gastroenteritis, malnutrition and dehydration. In the hospital, the child developed septicemia, and temperature reached up to 38.6°C. Despite intensive antibiotic treatment, the patient died 12 days after admission. Necropsy disclosed bilateral bronchopneumonia, bilateral fronto-parietal subarachnoid hemorrhage, and extensive necrosis of the inferior half of both cerebellar hemispheres. On histopathological examination of the necrotic cerebellar cortex, numerous sickled erythrocytes were observed in petechial hemorrhages and, in lesser quantities, inside capillaries. Lesions of the central nervous system in sickle cell anemia most often involve the cerebral cortex, and a single extensive cerebellar infarction as present in this case seems extremely rare. The pathogenetic mechanism of the necrosis is unclear, since thrombosis was not observed either in large blood vessels or in capillaries. Possible contributory factors were the infectious condition (septicemia), fever, and anoxia caused by the extensive bronchopneumonia.