5 resultados para Dehydration.
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
It is well known that trichomes protect plant organs, and several studies have investigated their role in the adaptation of plants to harsh environments. Recent studies have shown that the production of hydrophilic substances by glandular trichomes and the deposition of this secretion on young organs may facilitate water retention, thus preventing desiccation and favouring organ growth until the plant develops other protective mechanisms. Lychnophora diamantinana is a species endemic to the Brazilian 'campos rupestres' (rocky fields), a region characterized by intense solar radiation and water deficits. This study sought to investigate trichomes and the origin of the substances observed on the stem apices of L. diamantinana. Samples of stem apices, young and expanded leaves were studied using standard techniques, including light microscopy and scanning and transmission electron microscopy. Histochemical tests were used to identify the major groups of metabolites present in the trichomes and the hyaline material deposited on the apices. Non-glandular trichomes and glandular trichomes were observed. The material deposited on the stem apices was hyaline, highly hydrophilic and viscous. This hyaline material primarily consists of carbohydrates that result from the partial degradation of the cell wall of uniseriate trichomes. This degradation occurs at the same time that glandular trichomes secrete terpenoids, phenolic compounds and proteins. These results suggest that the non-glandular trichomes on the leaves of L. diamantinana help protect the young organ, particularly against desiccation, by deposition of highly hydrated substances on the apices. Furthermore, the secretion of glandular trichomes probably repels herbivore and pathogen attacks.
Resumo:
Annatto seeds do not germinate during early stages of their development because of insufficient reserve substances. In situ analysis showed that the principal reserves are proteins and starch, deposited in endosperm cells. During the early stages of development, the starch grains were elliptic, because amylose was the minor component. During development, these grains became more spherical due to an increase in amylose relative to amylopectin. Endosperm cells do not contain protein bodies, but they accumulate proteins dispersed in the cytoplasm. At the final stage of development the proteins became compacted due to the dehydration of the seeds wich is part of the global process of orthodox seeds maturation. Natural fluorescence revealed aromatic amino acids, principally tryptophan and tyrosine in the proteins. The seeds reached their maximum dry weight after moisture contents had declined to around 60%. At this point the seeds presented maximum germination capacity.
Resumo:
The main purpose of this work was to study the germination of Ternstroemia brasiliensis seeds both in laboratory and field conditions in order to contribute to understanding the regeneration ecology of the species. The seeds were dispersed with relatively high moisture content and exhibit a recalcitrant storage behaviour because of their sensitivity to dehydration and to dry storage. The germinability is relatively high and is not affected either by light or aril presence. The absence of the dormancy and the low sensitivity to far red light can enable to seeds to promptly germinate under Restinga forest canopy, not forming a soil seed bank. The constant temperatures of 25 ºC and 30 ºC were considered optimum for germination of T. brasiliensis seeds. Temperature germination parameters can be affected by light conditions. The thermal-time model can be a suitable tool for investigating the temperature dependence on the seed germination of T. brasiliensis. The germination characteristics de T. brasiliensis are typical of non pioneer species, and help to explain the distribution of the species. Germination of T. brasiliensis seeds in Restinga environment may be not limited by light and temperature; otherwise the soil moisture content can affect the seed germination.
Resumo:
The aim of this research was to optimize osmotic dehydration of pineapple, according to two criteria: maximize water loss and minimize solid gain. The process was made as an application to Combined Methods Technology, in which three preservation factors were combined: water activity, pH and chemical preservatives, all being applied at low levels, in order to get a product resembling non-processed fruit. The experiment was divided into three treatments, being: non-coated pineapple pieces (A), pieces coated with alginate (B) and coated with low-methoxyl pectin (C). Process involved the following main steps: enzymatic inactivation of fruit pieces; in treatments B and C, incorporation of their respective coatings; and osmotic dehydration, in sucrose syrup containing potassium sorbate and citric acid. Optimum conditions, determined from Response Surface Methodology, were the following: dehydration of fruit pieces coated by alginate, at 42-47° C, in sucrose syrup at 66-69° Brix, for 220 to 270 minutes. Results indicated that both coatings significantly affected the mass transfers of the process, reducing solid incorporation and increasing water loss; therefore, increasing weight loss and performance ratio (water loss: solid incorporation) took place. Water activity was not significantly affected by the coatings. The product obtained under optimum conditions was submitted to sensorial evaluation, and presented a good general acceptance. Moulds and yeasts countings indicated good microbiological stability of the product for at least 60 days at 30ºC.
Resumo:
A 6 month-old mulatto boy was admitted on account of acute gastroenteritis, malnutrition and dehydration. In the hospital, the child developed septicemia, and temperature reached up to 38.6°C. Despite intensive antibiotic treatment, the patient died 12 days after admission. Necropsy disclosed bilateral bronchopneumonia, bilateral fronto-parietal subarachnoid hemorrhage, and extensive necrosis of the inferior half of both cerebellar hemispheres. On histopathological examination of the necrotic cerebellar cortex, numerous sickled erythrocytes were observed in petechial hemorrhages and, in lesser quantities, inside capillaries. Lesions of the central nervous system in sickle cell anemia most often involve the cerebral cortex, and a single extensive cerebellar infarction as present in this case seems extremely rare. The pathogenetic mechanism of the necrosis is unclear, since thrombosis was not observed either in large blood vessels or in capillaries. Possible contributory factors were the infectious condition (septicemia), fever, and anoxia caused by the extensive bronchopneumonia.