18 resultados para Deep Brain-stimulation
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
The aim of this study is to test the feasibility and reproducibility of diffusion-weighted magnetic resonance imaging (DW-MRI) evaluations of the fetal brains in cases of twin-twin transfusion syndrome (TTTS). From May 2011 to June 2012, 24 patients with severe TTTS underwent MRI scans for evaluation of the fetal brains. Datasets were analyzed offline on axial DW images and apparent diffusion coefficient (ADC) maps by two radiologists. The subjective evaluation was described as the absence or presence of water diffusion restriction. The objective evaluation was performed by the placement of 20-mm(2) circular regions of interest on the DW image and ADC maps. Subjective interobserver agreement was assessed by the kappa correlation coefficient. Objective intraobserver and interobserver agreements were assessed by proportionate Bland-Altman tests. Seventy-four DW-MRI scans were performed. Sixty of them (81.1%) were considered to be of good quality. Agreement between the radiologists was 100% for the absence or presence of diffusion restriction of water. For both intraobserver and interobserver agreement of ADC measurements, proportionate Bland-Altman tests showed average percentage differences of less than 1.5% and 95% CI of less than 18% for all sites evaluated. Our data demonstrate that DW-MRI evaluation of the fetal brain in TTTS is feasible and reproducible.
Resumo:
Spider venoms contain neurotoxic peptides aimed at paralyzing prey or for defense against predators; that is why they represent valuable tools for studies in neuroscience field. The present study aimed at identifying the process of internalization that occurs during the increased trafficking of vesicles caused by Phoneutria nigriventer spider venom (PNV)-induced blood-brain barrier (BBB) breakdown. Herein, we found that caveolin-1α is up-regulated in the cerebellar capillaries and Purkinje neurons of PNV-administered P14 (neonate) and 8- to 10-week-old (adult) rats. The white matter and granular layers were regions where caveolin-1α showed major upregulation. The variable age played a role in this effect. Caveolin-1 is the central protein that controls caveolae formation. Caveolar-specialized cholesterol- and sphingolipid-rich membrane sub-domains are involved in endocytosis, transcytosis, mechano-sensing, synapse formation and stabilization, signal transduction, intercellular communication, apoptosis, and various signaling events, including those related to calcium handling. PNV is extremely rich in neurotoxic peptides that affect glutamate handling and interferes with ion channels physiology. We suggest that the PNV-induced BBB opening is associated with a high expression of caveolae frame-forming caveolin-1α, and therefore in the process of internalization and enhanced transcytosis. Caveolin-1α up-regulation in Purkinje neurons could be related to a way of neurons to preserve, restore, and enhance function following PNV-induced excitotoxicity. The findings disclose interesting perspectives for further molecular studies of the interaction between PNV and caveolar specialized membrane domains. It proves PNV to be excellent tool for studies of transcytosis, the most common form of BBB-enhanced permeability.
Resumo:
The reconstruction of the external ear to correct congenital deformities or repair following trauma remains a significant challenge in reconstructive surgery. Previously, we have developed a novel approach to create scaffold-free, tissue engineering elastic cartilage constructs directly from a small population of donor cells. Although the developed constructs appeared to adopt the structural appearance of native auricular cartilage, the constructs displayed limited expression and poor localization of elastin. In the present study, the effect of growth factor supplementation (insulin, IGF-1, or TGF-β1) was investigated to stimulate elastogenesis as well as to improve overall tissue formation. Using rabbit auricular chondrocytes, bioreactor-cultivated constructs supplemented with either insulin or IGF-1 displayed increased deposition of cartilaginous ECM, improved mechanical properties, and thicknesses comparable to native auricular cartilage after 4 weeks of growth. Similarly, growth factor supplementation resulted in increased expression and improved localization of elastin, primarily restricted within the cartilaginous region of the tissue construct. Additional studies were conducted to determine whether scaffold-free engineered auricular cartilage constructs could be developed in the 3D shape of the external ear. Isolated auricular chondrocytes were grown in rapid-prototyped tissue culture molds with additional insulin or IGF-1 supplementation during bioreactor cultivation. Using this approach, the developed tissue constructs were flexible and had a 3D shape in very good agreement to the culture mold (average error <400 µm). While scaffold-free, engineered auricular cartilage constructs can be created with both the appropriate tissue structure and 3D shape of the external ear, future studies will be aimed assessing potential changes in construct shape and properties after subcutaneous implantation.
Resumo:
Severe accidents caused by the armed spider Phoneutria nigriventer cause neurotoxic manifestations in victims. In experiments with rats, P. nigriventer venom (PNV) temporarily disrupts the properties of the BBB by affecting both the transcellular and the paracellular route. However, it is unclear how cells and/or proteins participate in the transient opening of the BBB. The present study demonstrates that PNV is a substrate for the multidrug resistance protein-1 (MRP1) in cultured astrocyte and endothelial cells (HUVEC) and increases mrp1 and cx43 and down-regulates glut1 mRNA transcripts in cultured astrocytes. The inhibition of nNOS by 7-nitroindazole suggests that NO derived from nNOS mediates some of these effects by either accentuating or opposing the effects of PNV. In vivo, MRP1, GLUT1 and Cx43 protein expression is increased differentially in the hippocampus and cerebellum, indicating region-related modulation of effects. PNV contains a plethora of Ca(2+), K(+) and Na(+) channel-acting neurotoxins that interfere with glutamate handling. It is suggested that the findings of the present study are the result of a complex interaction of signaling pathways, one of which is the NO, which regulates BBB-associated proteins in response to PNV interference on ions physiology. The present study provides additional insight into PNV-induced BBB dysfunction and shows that a protective mechanism is activated against the venom. The data shows that PNV has qualities for potential use in drug permeability studies across the BBB.
Resumo:
Phoneutria nigriventer spider accidental envenomation provokes neurotoxic manifestations, which when critical, results in epileptic-like episodes. In rats, P. nigriventer venom (PNV) causes blood-brain barrier breakdown (BBBb). The PNV-induced excitotoxicity results from disturbances on Na(+), K(+) and Ca(2+) channels and glutamate handling. The vascular endothelial growth factor (VEGF), beyond its angiogenic effect, also, interferes on synaptic physiology by affecting the same ion channels and protects neurons from excitotoxicity. However, it is unknown whether VEGF expression is altered following PNV envenomation. We found that adult and neonates rats injected with PNV showed immediate neurotoxic manifestations which paralleled with endothelial occludin, β-catenin, and laminin downregulation indicative of BBBb. In neonate rats, VEGF, VEGF mRNA, and Flt-1 receptors, glutamate decarboxylase, and calbindin-D28k increased in Purkinje neurons, while, in adult rats, the BBBb paralleled with VEGF mRNA, Flk-1, and calbindin-D28k increases and Flt-1 decreases. Statistically, the variable age had a role in such differences, which might be due to age-related unequal maturation of blood-brain barrier (BBB) and thus differential cross-signaling among components of the glial neurovascular unit. The concurrent increases in the VEGF/Flt-1/Flk-1 system in the cerebellar neuron cells and the BBBb following PNV exposure might imply a cytokine modulation of neuronal excitability consequent to homeostatic perturbations induced by ion channels-acting PNV neuropeptides. Whether such modulation represents neuroprotection needs further investigation.
Resumo:
The aim of this work was to characterize the effects of partial inhibition of respiratory complex I by rotenone on H2O2 production by isolated rat brain mitochondria in different respiratory states. Flow cytometric analysis of membrane potential in isolated mitochondria indicated that rotenone leads to uniform respiratory inhibition when added to a suspension of mitochondria. When mitochondria were incubated in the presence of a low concentration of rotenone (10 nm) and NADH-linked substrates, oxygen consumption was reduced from 45.9 ± 1.0 to 26.4 ± 2.6 nmol O2 mg(-1) min(-1) and from 7.8 ± 0.3 to 6.3 ± 0.3 nmol O2 mg(-1) min(-1) in respiratory states 3 (ADP-stimulated respiration) and 4 (resting respiration), respectively. Under these conditions, mitochondrial H2O2 production was stimulated from 12.2 ± 1.1 to 21.0 ± 1.2 pmol H2O2 mg(-1) min(-1) and 56.5 ± 4.7 to 95.0 ± 11.1 pmol H2O2 mg(-1) min(-1) in respiratory states 3 and 4, respectively. Similar results were observed when comparing mitochondrial preparations enriched with synaptic or nonsynaptic mitochondria or when 1-methyl-4-phenylpyridinium ion (MPP(+)) was used as a respiratory complex I inhibitor. Rotenone-stimulated H2O2 production in respiratory states 3 and 4 was associated with a high reduction state of endogenous nicotinamide nucleotides. In succinate-supported mitochondrial respiration, where most of the mitochondrial H2O2 production relies on electron backflow from complex II to complex I, low rotenone concentrations inhibited H2O2 production. Rotenone had no effect on mitochondrial elimination of micromolar concentrations of H2O2. The present results support the conclusion that partial complex I inhibition may result in mitochondrial energy crisis and oxidative stress, the former being predominant under oxidative phosphorylation and the latter under resting respiration conditions.
Resumo:
Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. Here we sought to investigate the inflammatory and toxicological effects induced by the intrahippocampal administration of crotamine isolated from Crotalus whole venom. Adult rats received an intrahippocampal infusion of crotamine or vehicle and were euthanized 24 h or 21 days after infusion. Plasma and brain tissue were collected for biochemical analysis. Complete blood count, creatinine, urea, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), creatine-kinase (CK), creatine kinase-muscle B (CK-MB) and oxidative parameters (assessed by DNA damage and micronucleus frequency in leukocytes, lipid peroxidation and protein carbonyls in plasma and brain) were quantified. Unpaired and paired t-tests were used for comparisons between saline and crotamine groups, and within groups (24 h vs. 21 days), respectively. After 24 h crotamine infusion promoted an increase of urea, GOT, GPT, CK, and platelets values (p ≤ 0.01), while red blood cells, hematocrit and leukocytes values decreased (p ≤ 0.01). Additionally, 21 days after infusion crotamine group showed increased creatinine, leukocytes, TBARS (plasma and brain), carbonyl (plasma and brain) and micronucleus compared to the saline-group (p ≤ 0.01). Our findings show that crotamine infusion alter hematological parameters and cardiac markers, as well as oxidative parameters, not only in the brain, but also in the blood, indicating a systemic pro-inflammatory and toxicological activity. A further scientific attempt in terms of preserving the beneficial activity over toxicity is required.
Resumo:
A randomized controlled trial study was performed to evaluate the efficacy of transcutaneous tibial nerve stimulation (TTNS) and sham TTNS, in patients with Parkinson disease (PD) with lower urinary tract symptoms (LUTS). Randomized controlled trial. Thirteen patients with a diagnosis of PD and bothersome LUTS were randomly allocated to one of the following groups: Group I: TTNS group (n = 8) and group II: Sham group (n = 5). Both groups attended twice a week during 5 weeks; each session lasted 30 minutes. Eight patients received TTNS treatment and 5 subjects allocated to group II were managed with sham surface electrodes that delivered no electrical stimulation. Assessments were performed before and after the treatment; they included a 3-day bladder diary, Overactive Bladder Questionnaire (OAB-V8), and the International Consultation on Incontinence Quality of Life Questionnaire Short Form (ICIQ-SF), and urodynamic evaluation. Following 5 weeks of treatment, patients allocated to TTNS demonstrated statistically significant reductions in the number of urgency episodes (P = .004) and reductions in nocturia episodes (P < .01). Participants allocated to active treatment also showed better results after treatment in the OAB-V8 and ICIQ-SF scores (P < .01, respectively). Urodynamic testing revealed that patients in the active treatment group showed improvements in intravesical volume at strong desire to void (P < .05) and volume at urgency (P < .01) when compared to subjects in the sham treatment group. These findings suggest that TTNS is effective in the treatment of LUTS in patients with PD, reducing urgency and nocturia episodes and improving urodynamic parameters as well as symptom scores measured by the OAB-V8 and health-related quality-of-life scores measured by the ICIQ-SF.
Resumo:
Chronic and systemic treatment of rodents with rotenone, a classical inhibitor of mitochondrial respiratory complex I, results in neurochemical, behavioral, and neuropathological features of Parkinson's disease. The aim of the present study was to evaluate whether brain mitochondria from old rats (24 months old) would be more susceptible to rotenone-induced inhibition of oxygen consumption and increased generation of H2O2 than mitochondria from young-adult rats (3-4 months old). Isolated brain mitochondria were incubated in the presence of different rotenone concentrations (5, 10, and 100nM), and oxygen consumption and H2O2 production were measured during respiratory states 3 (ADP-stimulated respiration) and 4 (resting respiration). Respiratory state 3 and citrate synthase activity were significantly lower in mitochondria from old rats. Mitochondria from young-adult and old rats showed similar sensitivity to rotenone-induced inhibition of oxygen consumption. Similarly, H2O2 production rates by both types of mitochondria were dose-dependently stimulated to the same extent by increasing concentrations of rotenone. We conclude that rotenone exerts similar effects on oxygen consumption and H2O2 production by isolated brain mitochondria from young-adult and old rats. Therefore, aging does not increase the mitochondrial H2O2 generation in response to complex I inhibition.
Resumo:
To verify the methods used by the clinical trials that assessed the effect of tactile/kinesthetic stimulation on weight gain in preterm infants and highlight the similarities and differences among such studies. This review collected studies from two databases, PEDro and PubMed, in July of 2014, in addition to bibliographies. Two researchers assessed the relevant titles independently, and then chose which studies to read in full and include in this review by consensus. Clinical trials that studied tactile stimulation or massage therapy whether or not associated with kinesthetic stimulation of preterm infants; that assessed weight gain after the intervention; that had a control group and were composed in English, Portuguese, or Spanish were included. A total of 520 titles were found and 108 were selected for manuscript reading. Repeated studies were excluded, resulting in 40 different studies. Of these, 31 met all the inclusion criteria. There were many differences in the application of tactile/kinesthetic stimulation techniques among studies, which hindered the accurate reproduction of the procedure. Also, many studies did not describe the adverse events that occurred during stimulation, the course of action taken when such events occurred, and their effect on the outcome. These studies made a relevant contribution towards indicating tactile/kinesthetic stimulation as a promising tool. Nevertheless, there was no standard for application among them. Future studies should raise the level of methodological rigor and describe the adverse events. This may permit other researchers to be more aware of expected outcomes, and a standard technique could be established.
Resumo:
In this study, we hypothesized that blunting of the natriuresis response to intracerebroventricularly (i.c.v.) microinjected cholinergic and adrenergic agonists is involved in the development of hypertension in spontaneously hypertensive rats (SHR). We evaluated the effect of i.c.v. injection of cholinergic and noradrenergic agonists, at increasing concentrations, and of muscarinic cholinergic and α1 and α2-adrenoceptor antagonists on blood pressure and urinary sodium handling in SHR, compared with age-matched Wistar Kyoto rats (WR). We confirmed that CCh and NE microinjected into the lateral ventricle (LV) of conscious rats leads to enhanced natriuresis. This response was associated with increased proximal and post-proximal sodium excretion accompanied by an unchanged rate of glomerular filtration. We showed that cholinergic-induced natriuresis in WR and SHR was attenuated by previous i.c.v. administration of atropine and was significantly lower in the hypertensive strain than in WR. In both groups the natriuretic effect of injection of noradrenaline into the LV was abolished by previous local injection of an α1-adrenoceptor antagonist (prazosin). Conversely, LV α2-adrenoceptor antagonist (yohimbine) administration potentiated the action of noradrenaline. The LV yohimbine pretreatment normalized urinary sodium excretion in SHR compared with age-matched WR. In conclusion, these are, as far as we are aware, the first results showing the importance of interaction of central cholinergic and/or noradrenergic receptors in the pathogenesis of spontaneous hypertension. These experiments also provide good evidence of the existence of a central adrenergic mechanism consisting of α1 and α2-adrenoceptors which works antagonistically on regulation of renal sodium excretion.
Resumo:
The pathological mechanisms underlying cognitive dysfunction in multiple sclerosis (MS) are not yet fully understood and, in addition to demyelinating lesions and gray-matter atrophy, subclinical disease activity may play a role. To evaluate the contribution of asymptomatic gadolinium-enhancing lesions to cognitive dysfunction along with gray-matter damage and callosal atrophy in relapsing-remitting MS (RRMS) patients. Forty-two treated RRMS and 30 controls were evaluated. MRI (3T) variables of interest were brain white-matter and cortical lesion load, cortical and deep gray-matter volumes, corpus callosum volume and presence of gadolinium-enhancing lesions. Outcome variables included EDSS, MS Functional Composite (MSFC) subtests and the Brief Repeatable Battery of Neuropsychological tests. Cognitive dysfunction was classified as deficits in two or more cognitive subtests. Multivariate regression analyses assessed the contribution of MRI metrics to outcomes. Patients with cognitive impairment (45.2%) had more cortical lesions and lower gray-matter and callosal volumes. Patients with subclinical MRI activity (15%) had worse cognitive performance. Clinical disability on MSFC was mainly associated with putaminal atrophy. The main independent predictors for cognitive deficits were high burden of cortical lesions and number of gadolinium-enhancing lesions. Cognitive dysfunction was especially related to high burden of cortical lesions and subclinical disease activity. Cognitive studies in MS should look over subclinical disease activity as a potential contributor to cognitive impairment.
Resumo:
Mapping of elements in biological tissue by laser induced mass spectrometry is a fast growing analytical methodology in life sciences. This method provides a multitude of useful information of metal, nonmetal, metalloid and isotopic distribution at major, minor and trace concentration ranges, usually with a lateral resolution of 12-160 µm. Selected applications in medical research require an improved lateral resolution of laser induced mass spectrometric technique at the low micrometre scale and below. The present work demonstrates the applicability of a recently developed analytical methodology - laser microdissection associated to inductively coupled plasma mass spectrometry (LMD ICP-MS) - to obtain elemental images of different solid biological samples at high lateral resolution. LMD ICP-MS images of mouse brain tissue samples stained with uranium and native are shown, and a direct comparison of LMD and laser ablation (LA) ICP-MS imaging methodologies, in terms of elemental quantification, is performed.
Resumo:
Olanzapine, an atypical antipsychotic drug, was administered to a patient with Huntington's disease (HD) with marked choreiform movements. Brain SPECT with 99mTc-HMPAO was performed before and after treatment. Brain SPECT imaging has been performed in patients with HD in order to determine the status of basal ganglia perfusion. The use of brain SPECT with 99mTc-HMPAO before and after treatment in patients with HD has not been yet reported. The marked hypoperfusion of the basal ganglia on brain SPECT performed before therapy with olanzapine improved significantly after treatment.