2 resultados para Brandt, Willy

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bisphenol A (BPA) is a chemical that has been investigated for it potential to cause prostate diseases. In this study, pregnant Sprague-Dawley rats were treated with 25 or 250 μg/kg BPA from gestational day (GD) 10 to GD21 with or without concurrent indole-3-carbinol (I3C) feeding. I3C is a phytochemical, and it affords chemoprotection against many types of neoplasia. Male F1 rats from different litters were euthanized on post-natal day (PND) 21 and PND180. BPA-treated groups showed a significant increase in histopathological lesions, but I3C feeding reversed many of these changes, mainly at PND180. Maternal I3C feeding increased prostate epithelial apoptosis in the BPA-treated groups and across age groups. Furthermore, I3C induced partial normalization of the prostate histoarchitecture. The results pointed to a protective effect of maternal I3C feeding during pregnancy in the BPA-exposed male offspring, thereby indicating reduction in the harmful effects of gestational BPA imprinting on the prostate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The efficacy of the human papillomavirus type 16 (HPV-16)/HPV-18 AS04-adjuvanted vaccine against cervical infections with HPV in the Papilloma Trial against Cancer in Young Adults (PATRICIA) was evaluated using a combination of the broad-spectrum L1-based SPF10 PCR-DNA enzyme immunoassay (DEIA)/line probe assay (LiPA25) system with type-specific PCRs for HPV-16 and -18. Broad-spectrum PCR assays may underestimate the presence of HPV genotypes present at relatively low concentrations in multiple infections, due to competition between genotypes. Therefore, samples were retrospectively reanalyzed using a testing algorithm incorporating the SPF10 PCR-DEIA/LiPA25 plus a novel E6-based multiplex type-specific PCR and reverse hybridization assay (MPTS12 RHA), which permits detection of a panel of nine oncogenic HPV genotypes (types 16, 18, 31, 33, 35, 45, 52, 58, and 59). For the vaccine against HPV types 16 and 18, there was no major impact on estimates of vaccine efficacy (VE) for incident or 6-month or 12-month persistent infections when the MPTS12 RHA was included in the testing algorithm versus estimates with the protocol-specified algorithm. However, the alternative testing algorithm showed greater sensitivity than the protocol-specified algorithm for detection of some nonvaccine oncogenic HPV types. More cases were gained in the control group than in the vaccine group, leading to higher point estimates of VE for 6-month and 12-month persistent infections for the nonvaccine oncogenic types included in the MPTS12 RHA assay (types 31, 33, 35, 45, 52, 58, and 59). This post hoc analysis indicates that the per-protocol testing algorithm used in PATRICIA underestimated the VE against some nonvaccine oncogenic HPV types and that the choice of the HPV DNA testing methodology is important for the evaluation of VE in clinical trials. (This study has been registered at ClinicalTrials.gov under registration no. NCT00122681.).