8 resultados para Binary functionalization
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
The mesoporous SBA-15 silica with uniform hexagonal pore, narrow pore size distribution and tuneable pore diameter was organofunctionalized with glutaraldehyde-bridged silylating agent. The precursor and its derivative silicas were ibuprofen-loaded for controlled delivery in simulated biological fluids. The synthesized silicas were characterized by elemental analysis, infrared spectroscopy, (13)C and (29)Si solid state NMR spectroscopy, nitrogen adsorption, X-ray diffractometry, thermogravimetry and scanning electron microscopy. Surface functionalization with amine containing bridged hydrophobic structure resulted in significantly decreased surface area from 802.4 to 63.0 m(2) g(-1) and pore diameter 8.0-6.0 nm, which ultimately increased the drug-loading capacity from 18.0% up to 28.3% and a very slow release rate of ibuprofen over the period of 72.5h. The in vitro drug release demonstrated that SBA-15 presented the fastest release from 25% to 27% and SBA-15GA gave near 10% of drug release in all fluids during 72.5 h. The Korsmeyer-Peppas model better fits the release data with the Fickian diffusion mechanism and zero order kinetics for synthesized mesoporous silicas. Both pore sizes and hydrophobicity influenced the rate of the release process, indicating that the chemically modified silica can be suggested to design formulation of slow and constant release over a defined period, to avoid repeated administration.
Resumo:
Lipidic mixtures present a particular phase change profile highly affected by their unique crystalline structure. However, classical solid-liquid equilibrium (SLE) thermodynamic modeling approaches, which assume the solid phase to be a pure component, sometimes fail in the correct description of the phase behavior. In addition, their inability increases with the complexity of the system. To overcome some of these problems, this study describes a new procedure to depict the SLE of fatty binary mixtures presenting solid solutions, namely the Crystal-T algorithm. Considering the non-ideality of both liquid and solid phases, this algorithm is aimed at the determination of the temperature in which the first and last crystal of the mixture melts. The evaluation is focused on experimental data measured and reported in this work for systems composed of triacylglycerols and fatty alcohols. The liquidus and solidus lines of the SLE phase diagrams were described by using excess Gibbs energy based equations, and the group contribution UNIFAC model for the calculation of the activity coefficients of both liquid and solid phases. Very low deviations of theoretical and experimental data evidenced the strength of the algorithm, contributing to the enlargement of the scope of the SLE modeling.
Resumo:
To analyze the effects of treatment approach on the outcomes of newborns (birth weight [BW] < 1,000 g) with patent ductus arteriosus (PDA), from the Brazilian Neonatal Research Network (BNRN) on: death, bronchopulmonary dysplasia (BPD), severe intraventricular hemorrhage (IVH III/IV), retinopathy of prematurity requiring surgical (ROPsur), necrotizing enterocolitis requiring surgery (NECsur), and death/BPD. This was a multicentric, cohort study, retrospective data collection, including newborns (BW < 1000 g) with gestational age (GA) < 33 weeks and echocardiographic diagnosis of PDA, from 16 neonatal units of the BNRN from January 1, 2010 to Dec 31, 2011. Newborns who died or were transferred until the third day of life, and those with presence of congenital malformation or infection were excluded. Groups: G1 - conservative approach (without treatment), G2 - pharmacologic (indomethacin or ibuprofen), G3 - surgical ligation (independent of previous treatment). Factors analyzed: antenatal corticosteroid, cesarean section, BW, GA, 5 min. Apgar score < 4, male gender, Score for Neonatal Acute Physiology Perinatal Extension (SNAPPE II), respiratory distress syndrome (RDS), late sepsis (LS), mechanical ventilation (MV), surfactant (< 2 h of life), and time of MV. death, O2 dependence at 36 weeks (BPD36wks), IVH III/IV, ROPsur, NECsur, and death/BPD36wks. Student's t-test, chi-squared test, or Fisher's exact test; Odds ratio (95% CI); logistic binary regression and backward stepwise multiple regression. Software: MedCalc (Medical Calculator) software, version 12.1.4.0. p-values < 0.05 were considered statistically significant. 1,097 newborns were selected and 494 newborns were included: G1 - 187 (37.8%), G2 - 205 (41.5%), and G3 - 102 (20.6%). The highest mortality was observed in G1 (51.3%) and the lowest in G3 (14.7%). The highest frequencies of BPD36wks (70.6%) and ROPsur were observed in G3 (23.5%). The lowest occurrence of death/BPD36wks occurred in G2 (58.0%). Pharmacological (OR 0.29; 95% CI: 0.14-0.62) and conservative (OR 0.34; 95% CI: 0.14-0.79) treatments were protective for the outcome death/BPD36wks. The conservative approach of PDA was associated to high mortality, the surgical approach to the occurrence of BPD36wks and ROPsur, and the pharmacological treatment was protective for the outcome death/BPD36wks.
Resumo:
We report the first measurement of charmed-hadron (D(0)) production via the hadronic decay channel (D(0) → K(-) + π(+)) in Au+Au collisions at sqrt[s(NN)] = 200 GeV with the STAR experiment. The charm production cross section per nucleon-nucleon collision at midrapidity scales with the number of binary collisions, N(bin), from p+p to central Au+Au collisions. The D(0) meson yields in central Au + Au collisions are strongly suppressed compared to those in p+p scaled by N(bin), for transverse momenta p(T) > 3 GeV/c, demonstrating significant energy loss of charm quarks in the hot and dense medium. An enhancement at intermediate p(T) is also observed. Model calculations including strong charm-medium interactions and coalescence hadronization describe our measurements.
Resumo:
During the last ten years, graphene oxide has been explored in many applications due to its remarkable electroconductivity, thermal properties and mobility of charge carriers, among other properties. As discussed in this review, the literature suggests that a total characterization of graphene oxide must be conducted because oxidation debris (synthesis impurities) present in the graphene oxides could act as a graphene oxide surfactant, stabilizing aqueous dispersions. It is also important to note that the structure models of graphene oxide need to be revisited because of significant implications for its chemical composition and its direct covalent functionalization. Another aspect that is discussed is the need to consider graphene oxide surface chemistry. The hemolysis assay is recommended as a reliable test for the preliminary assessment of graphene oxide toxicity, biocompatibility and cell membrane interaction. More recently, graphene oxide has been extensively explored for drug delivery applications. An important increase in research efforts in this emerging field is clearly represented by the hundreds of related publications per year, including some reviews. Many studies have been performed to explore the graphene oxide properties that enable it to deliver more than one activity simultaneously and to combine multidrug systems with photothermal therapy, indicating that graphene oxide is an attractive tool to overcome hurdles in cancer therapies. Some strategic aspects of the application of these materials in cancer treatment are also discussed. In vitro studies have indicated that graphene oxide can also promote stem cell adhesion, growth and differentiation, and this review discusses the recent and pertinent findings regarding graphene oxide as a valuable nanomaterial for stem cell research in medicine. The protein corona is a key concept in nanomedicine and nanotoxicology because it provides a biomolecular identity for nanomaterials in a biological environment. Understanding protein corona-nanomaterial interactions and their influence on cellular responses is a challenging task at the nanobiointerface. New aspects and developments in this area are discussed.
Resumo:
Lateral pterygoid muscle (LPM) plays an important role in jaw movement and has been implicated in Temporomandibular disorders (TMDs). Migraine has been described as a common symptom in patients with TMDs and may be related to muscle hyperactivity. This study aimed to compare LPM volume in individuals with and without migraine, using segmentation of the LPM in magnetic resonance (MR) imaging of the TMJ. Twenty patients with migraine and 20 volunteers without migraine underwent a clinical examination of the TMJ, according to the Research Diagnostic Criteria for TMDs. MR imaging was performed and the LPM was segmented using the ITK-SNAP 1.4.1 software, which calculates the volume of each segmented structure in voxels per cubic millimeter. The chi-squared test and the Fisher's exact test were used to relate the TMD variables obtained from the MR images and clinical examinations to the presence of migraine. Logistic binary regression was used to determine the importance of each factor for predicting the presence of a migraine headache. Patients with TMDs and migraine tended to have hypertrophy of the LPM (58.7%). In addition, abnormal mandibular movements (61.2%) and disc displacement (70.0%) were found to be the most common signs in patients with TMDs and migraine. In patients with TMDs and simultaneous migraine, the LPM tends to be hypertrophic. LPM segmentation on MR imaging may be an alternative method to study this muscle in such patients because the hypertrophic LPM is not always palpable.
Resumo:
The high cost of sensitivity commercial calorimeters may represent an obstacle for many calorimetric research groups. This work describes the construction and calibration of a batch differential heat conduction calorimeter with sample cells volumes of about 400 μL. The calorimeter was built using two small high sensibility square Peltier thermoelectric sensors and the total cost was estimated to be about US$ 500. The calorimeter was used to study the excess enthalpy of solution of binary mixtures of liquids, as a function of composition, for the following binary systems of solvents: water + 1,4-dioxane or + dimethylsulfoxide at 298,2 ± 0,5 K.
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física