13 resultados para Amp C

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigated the effects of running at 0.8 or 1.2 km/h on inflammatory proteins (i.e., protein levels of TNF- α , IL-1 β , and NF- κ B) and metabolic proteins (i.e., protein levels of SIRT-1 and PGC-1 α , and AMPK phosphorylation) in quadriceps of rats. Male Wistar rats at 3 (young) and 18 months (middle-aged rats) of age were divided into nonexercised (NE) and exercised at 0.8 or 1.2 km/h. The rats were trained on treadmill, 50 min per day, 5 days per week, during 8 weeks. Forty-eight hours after the last training session, muscles were removed, homogenized, and analyzed using biochemical and western blot techniques. Our results showed that: (a) running at 0.8 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with NE rats; (b) these responses were lower for the inflammatory proteins and higher for the metabolic proteins in young rats compared with middle-aged rats; (c) running at 1.2 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with 0.8 km/h; (d) these responses were similar between young and middle-aged rats when trained at 1.2 km. In summary, the age-related increases in inflammatory proteins, and the age-related declines in metabolic proteins can be reversed and largely improved by treadmill training.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutrient restriction during the early stages of life usually leads to alterations in glucose homeostasis, mainly insulin secretion and sensitivity, increasing the risk of metabolic disorders in adulthood. Despite growing evidence regarding the importance of insulin clearance during glucose homeostasis in health and disease, no information exists about this process in malnourished animals. Thus, in the present study, we aimed to determine the effect of a nutrient-restricted diet on insulin clearance using a model in which 30-d-old C57BL/6 mice were exposed to a protein-restricted diet for 14 weeks. After this period, we evaluated many metabolic variables and extracted pancreatic islet, liver, gastrocnemius muscle (GCK) and white adipose tissue samples from the control (normal-protein diet) and restricted (low-protein diet, LP) mice. Insulin concentrations were determined using RIA and protein expression and phosphorylation by Western blot analysis. The LP mice exhibited lower body weight, glycaemia, and insulinaemia, increased glucose tolerance and altered insulin dynamics after the glucose challenge. The improved glucose tolerance could partially be explained by an increase in insulin sensitivity through the phosphorylation of the insulin receptor/protein kinase B and AMP-activated protein kinase/acetyl-CoA carboxylase in the liver, whereas the changes in insulin dynamics could be attributed to reduced insulin secretion coupled with reduced insulin clearance and lower insulin-degrading enzyme (IDE) expression in the liver and GCK. In summary, protein-restricted mice not only produce and secrete less insulin, but also remove and degrade less insulin. This phenomenon has the double benefit of sparing insulin while prolonging and potentiating its effects, probably due to the lower expression of IDE in the liver, possibly with long-term consequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucocorticoid (GC) therapies may adversely cause insulin resistance (IR) that lead to a compensatory hyperinsulinemia due to insulin hypersecretion. The increased β-cell function is associated with increased insulin signaling that has the protein kinase B (AKT) substrate with 160 kDa (AS160) as an important downstream AKT effector. In muscle, both insulin and AMP-activated protein kinase (AMPK) signaling phosphorylate and inactivate AS160, which favors the glucose transporter (GLUT)-4 translocation to plasma membrane. Whether AS160 phosphorylation is modulated in islets from GC-treated subjects is unknown. For this, two animal models, Swiss mice and Wistar rats, were treated with dexamethasone (DEX) (1 mg/kg body weight) for 5 consecutive days. DEX treatment induced IR, hyperinsulinemia, and dyslipidemia in both species, but glucose intolerance and hyperglycemia only in rats. DEX treatment caused increased insulin secretion in response to glucose and augmented β-cell mass in both species that were associated with increased islet content and increased phosphorylation of the AS160 protein. Protein AKT phosphorylation, but not AMPK phosphorylation, was found significantly enhanced in islets from DEX-treated animals. We conclude that the augmented β-cell function developed in response to the GC-induced IR involves inhibition of the islet AS160 protein activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the FGFR3 gene cause the phenotypic spectrum of FGFR3 chondrodysplasias ranging from lethal forms to the milder phenotype seen in hypochondroplasia (Hch). The p.N540K mutation in the FGFR3 gene occurs in ∼70% of individuals with Hch, and nearly 30% of individuals with the Hch phenotype have no mutations in the FGFR3, which suggests genetic heterogeneity. The identification of a severe case of Hch associated with the typical mutation c.1620C > A and the occurrence of a c.1150T > C change that resulted in a p.F384L in exon 10, together with the suspicion that this second change could be a modulator of the phenotype, prompted us to investigate this hypothesis in a cohort of patients. An analysis of 48 patients with FGFR3 chondrodysplasia phenotypes and 330 healthy (control) individuals revealed no significant difference in the frequency of the C allele at the c.1150 position (p = 0.34). One patient carrying the combination `pathogenic mutation plus the allelic variant c.1150T > C' had a typical achondroplasia (Ach) phenotype. In addition, three other patients with atypical phenotypes showed no association with the allelic variant. Together, these results do not support the hypothesis of a modulatory role for the c.1150T > C change in the FGFR3 gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endurance exercise training as well as leucine supplementation modulates glucose homeostasis and protein turnover in mammals. Here, we analyze whether leucine supplementation alters the effects of endurance exercise on these parameters in healthy mice. Mice were distributed into sedentary (C) and exercise (T) groups. The exercise group performed a 12-week swimming protocol. Half of the C and T mice, designated as the CL and TL groups, were supplemented with leucine (1.5 % dissolved in the drinking water) throughout the experiment. As well known, endurance exercise training reduced body weight and the retroperitoneal fat pad, increased soleus mass, increased VO2max, decreased muscle proteolysis, and ameliorated peripheral insulin sensitivity. Leucine supplementation had no effect on any of these parameters and worsened glucose tolerance in both CL and TL mice. In the soleus muscle of the T group, AS-160(Thr-642) (AKT substrate of 160 kDa) and AMPK(Thr-172) (AMP-Activated Protein Kinase) phosphorylation was increased by exercise in both basal and insulin-stimulated conditions, but it was reduced in TL mice with insulin stimulation compared with the T group. Akt phosphorylation was not affected by exercise but was lower in the CL group compared with the other groups. Leucine supplementation increased mTOR phosphorylation at basal conditions, whereas exercise reduced it in the presence of insulin, despite no alterations in protein synthesis. In trained groups, the total FoxO3a protein content and the mRNA for the specific isoforms E2 and E3 ligases were reduced. In conclusion, leucine supplementation did not potentiate the effects of endurance training on protein turnover, and it also reduced its positive effects on glucose homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduction in sirtuin 1 (Sirt-1) is associated with extracellular matrix (ECM) accumulation in the diabetic kidney. Theobromine may reduce kidney ECM accumulation in diabetic rats. In the current study, we aimed to unravel, under diabetic conditions, the mechanism of kidney ECM accumulation induced by a reduction in Sirt-1 and the effect of theobromine in these events. In vitro, we used immortalized human mesangial cells (iHMCs) exposed to high glucose (HG; 30 mM), with or without small interfering RNA for NOX4 and Sirt-1. In vivo, spontaneously hypertensive rats (SHR) were rendered diabetic by means of streptozotocin and studied after 12 wk. The effects of treatment with theobromine were investigated under both conditions. HG leads to a decrease in Sirt-1 activity and NAD(+) levels in iHMCs. Sirt-1 activity could be reestablished by treatment with NAD(+), silencing NOX4, and poly (ADP-ribose) polymerase-1 (PARP-1) blockade, or with theobromine. HG also leads to a low AMP/ATP ratio, acetylation of SMAD3, and increased collagen IV, which is prevented by theobromine. Sirt-1 or AMPK blockade abolished these effects of theobromine. In diabetic SHR, theobromine prevented increases in albuminuria and kidney collagen IV, reduced AMPK, elevated NADPH oxidase activity and PARP-1, and reduced NAD(+) levels and Sirt-1 activity. These results suggest that in diabetes mellitus, Sirt-1 activity is reduced by PARP-1 activation and NAD(+) depletion due to low AMPK, which increases NOX4 expression, leading to ECM accumulation mediated by transforming growth factor (TGF)-β1 signaling. It is suggested that Sirt-1 activation by theobromine may have therapeutic potential for diabetic nephropathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The p23 protein is a chaperone widely involved in protein homeostasis, well known as an Hsp90 co-chaperone since it also controls the Hsp90 chaperone cycle. Human p23 includes a β-sheet domain, responsible for interacting with Hsp90; and a charged C-terminal region whose function is not clear, but seems to be natively unfolded. p23 can undergo caspase-dependent proteolytic cleavage to form p19 (p231-142), which is involved in apoptosis, while p23 has anti-apoptotic activity. To better elucidate the function of the human p23 C-terminal region, we studied comparatively the full-length human p23 and three C-terminal truncation mutants: p23₁₋₁₁₇; p23₁₋₁₃₁ and p23₁₋₁₄₂. Our data indicate that p23 and p19 have distinct characteristics, whereas the other two truncations behave similarly, with some differences to p23 and p19. We found that part of the C-terminal region can fold in an α-helix conformation and slightly contributes to p23 thermal-stability, suggesting that the C-terminal interacts with the β-sheet domain. As a whole, our results suggest that the C-terminal region of p23 is critical for its structure-function relationship. A mechanism where the human p23 C-terminal region behaves as an activation/inhibition module for different p23 activities is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vitamin C stability and concentration was evaluated in isotonic beverages and B group vitamins (B1, B2, B3, B5 and B6) in power beverages. The amount of vitamins was found to be above of that declared on the labels, even after the shelf life had been exceeded. A small decrease in the amount of B group vitamins was observed during the shelf life of the products. In the case of vitamin C this decrease was slightly higher. The present research shows the need of increased quality control and inspection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Edibles films are an alternative to synthetic materials used for packing food products. Barbados cherry is rich in vitamin C and carotenoids. The aim of this study was to characterize and develop films by casting from cassava starch, lyophilized Barbados cherry pulp and glycerol. The films were characterized with respect to thickness, water vapor permeability (WVP), water solubility, vitamin C, carotene and mechanical properties. The interaction of pulp and glycerol reduced film thickness. An increase in pulp concentration up to 60% increased WVP but beyond this concentration reduced both WVP and solubility leading to an increased level of vitamin C and β carotene in the films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To analyze the efficacy and safety of intraope-rative mitomycin C (MMC) in combined procedures (extra-capsular cataract extraction + trabeculectomy). Methods: Twenty-four patients were randomized to either MMC (0.5 mg/ml) (n = 14) or saline solution (n = 10) for 3 minutes during the combined procedure. Results: Twelve months after surgery, mean IOP in the MMC group (13.2 ± 2.9 mmHg) was significantly lower than in the control group (16.3 ± 3.9 mmHg) (p = 0.02). The mean number of medications used during the 12-month follow-up in the control group (1.33 ± 0.5) was significantly higher than in the MMC-treated group (0.5 ± 0.5) (p = 0.005). Life table analysis showed a significantly higher probability of IOP control in the MMC group than in the control group (p < 0.01). Conclusions: Intraoperative MMC is safe and effective in pro-moting a better IOP control and reducing the need for postoperative antiglaucoma medications. We suggest intraope-rative MMC to be routinely employed in combined procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to report a case of central retinal vein thrombosis associated with isolated heterozygous protein C deficiency. Acute occlusion of the central retinal vein presents as one of the most dramatic pictures in ophthalmology. It is often a result of both local and systemic causes. A rare systemic cause is heterozygous protein C deficiency, and it usually occurs in combination with other thrombophilic conditions. This case highlights that isolated heterozygous protein C deficiency may be the cause of central retinal vein thrombosis and underscores the importance of its screening in young patients with this ophthalmologic disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Universidade Estadual de Campinas. Faculdade de Educação Física