75 resultados para Julien, Stanislas, 1779-1873.
Resumo:
Sunlight exposure causes several types of injury to humans, especially on the skin; among the most common harmful effects due to ultraviolet (UV) exposure are erythema, pigmentation and lesions in DNA, which may lead to cancer. These long-term effects are minimized with the use of sunscreens, a class of cosmetic products that contains UV filters as the main component in the formulation; such molecules can absorb, reflect or diffuse UV rays, and can be used alone or as a combination to broaden the protection on different wavelengths. Currently, worldwide regulatory agencies define which ingredients and what quantities must be used in each country, and enforce companies to conduct tests that confirm the Sun Protection Factor (SPF) and the UVA (Ultraviolet A) factor. Standard SPF determination tests are currently conducted in vivo, using human subjects. In an industrial mindset, apart from economic and ethical reasons, the introduction of an in vitro method emerges as an interesting alternative by reducing risks associated to UV exposure on tests, as well as providing assertive analytical results. The present work aims to describe a novel methodology for SPF determination directly from sunscreen formulations using the previously described cosmetomics platform and mass spectrometry as the analytical methods of choice.
Resumo:
This study sought to analyse the behaviour of the average spinal posture using a novel investigative procedure in a maximal incremental effort test performed on a treadmill. Spine motion was collected via stereo-photogrammetric analysis in thirteen amateur athletes. At each time percentage of the gait cycle, the reconstructed spine points were projected onto the sagittal and frontal planes of the trunk. On each plane, a polynomial was fitted to the data, and the two-dimensional geometric curvature along the longitudinal axis of the trunk was calculated to quantify the geometric shape of the spine. The average posture presented at the gait cycle defined the spine Neutral Curve. This method enabled the lateral deviations, lordosis, and kyphosis of the spine to be quantified noninvasively and in detail. The similarity between each two volunteers was a maximum of 19% on the sagittal plane and 13% on the frontal (p<0.01). The data collected in this study can be considered preliminary evidence that there are subject-specific characteristics in spinal curvatures during running. Changes induced by increases in speed were not sufficient for the Neutral Curve to lose its individual characteristics, instead behaving like a postural signature. The data showed the descriptive capability of a new method to analyse spinal postures during locomotion; however, additional studies, and with larger sample sizes, are necessary for extracting more general information from this novel methodology.
Resumo:
Hypobromous acid (HOBr) is an inorganic acid produced by the oxidation of the bromide anion (Br(-)). The blood plasma level of Br(-) is more than 1,000-fold lower than that of chloride anion (Cl(-)). Consequently, the endogenous production of HOBr is also lower compared to hypochlorous acid (HOCl). Nevertheless, there is much evidence of the deleterious effects of HOBr. From these data, we hypothesized that the reactivity of HOBr could be better associated with its electrophilic strength. Our hypothesis was confirmed, since HOBr was significantly more reactive than HOCl when the oxidability of the studied compounds was not relevant. For instance: anisole (HOBr, k2=2.3×10(2)M(-1)s(-1), HOCl non-reactive); dansylglycine (HOBr, k2=7.3×10(6)M(-1)s(-1), HOCl, 5.2×10(2)M(-1)s(-1)); salicylic acid (HOBr, k2=4.0×10(4)M(-1)s(-1), non-reactive); 3-hydroxybenzoic acid (HOBr, k2=5.9×10(4)M(-1)s(-1), HOCl, k2=1.1×10(1)M(-1)s(-1)); uridine (HOBr, k2=1.3×10(3)M(-1)s(-1), HOCl non-reactive). The compounds 4-bromoanisole and 5-bromouridine were identified as the products of the reactions between HOBr and anisole or uridine, respectively, i.e. typical products of electrophilic substitutions. Together, these results show that, rather than an oxidant, HOBr is a powerful electrophilic reactant. This chemical property was theoretically confirmed by measuring the positive Mulliken and ChelpG charges upon bromine and chlorine. In conclusion, the high electrophilicity of HOBr could be behind its well-established deleterious effects. We propose that HOBr is the most powerful endogenous electrophile.
Resumo:
Several biotechnological processes can show an undesirable formation of emulsions making difficult phase separation and product recovery. The breakup of oil-in-water emulsions stabilized by yeast was studied using different physical and chemical methods. These emulsions were composed by deionized water, hexadecane and commercial yeast (Saccharomyces cerevisiae). The stability of the emulsions was evaluated varying the yeast concentration from 7.47 to 22.11% (w/w) and the phases obtained after gravity separation were evaluated on chemical composition, droplet size distribution, rheological behavior and optical microscopy. The cream phase showed kinetic stability attributed to mechanisms as electrostatic repulsion between the droplets, a possible Pickering-type stabilization and the viscoelastic properties of the concentrated emulsion. Oil recovery from cream phase was performed using gravity separation, centrifugation, heating and addition of demulsifier agents (alcohols and magnetic nanoparticles). Long centrifugation time and high centrifugal forces (2h/150,000×g) were necessary to obtain a complete oil recovery. The heat treatment (60°C) was not enough to promote a satisfactory oil separation. Addition of alcohols followed by centrifugation enhanced oil recovery: butanol addition allowed almost complete phase separation of the emulsion while ethanol addition resulted in 84% of oil recovery. Implementation of this method, however, would require additional steps for solvent separation. Addition of charged magnetic nanoparticles was effective by interacting electrostatically with the interface, resulting in emulsion destabilization under a magnetic field. This method reached almost 96% of oil recovery and it was potentially advantageous since no additional steps might be necessary for further purifying the recovered oil.
Resumo:
Biocatalysis currently is focusing on enzymatic and multi-enzymatic cascade processes instead of single steps imbedded into chemical pathways. Alongside this scientific revolution, this review provides an overview on multi-enzymatic cascades that are responsible for the biosynthesis of some terpenes, alkaloids and polyethers, which are important classes of natural products. Herein, we illustrate the development of studies inspired by multi- and chemo-enzymatic approaches to build the core moieties of polyethers, polypeptide alkaloids, piperidines and pyrrolidines promoted by the joint action of oxidoreductases, hydrolases, cyclases, transaminases and imine reductases.
Resumo:
The establishment of the most stable structures of eight membered rings is a challenging task to the field of conformational analysis. In this work, a series of 2-halocyclooctanones were synthesized (including fluorine, chlorine, bromine and iodine derivatives) and submitted to conformational studies using a combination of theoretical calculation and infrared spectroscopy. For each compound, four conformations were identified as the most important ones. These conformations are derived from the chair-boat conformation of cyclooctanone. The pseudo-equatorial (with respect to the halogen) conformer is preferred in vacuum and in low polarity solvents for chlorine, bromine and iodine derivatives. For 2-fluorocyclooctanone, the preferred conformation in vacuum is pseudo-axial. In acetonitrile, the pseudo-axial conformer becomes the most stable for the chlorine derivative. According to NBO calculations, the conformational preference is not dictated by electron delocalization, but by classical electrostatic repulsions.
Resumo:
Species identification is an essential step in the progress and completion of work in several areas of biological knowledge, but it is not a simple process. Due to the close phylogenetic relationship of certain species, morphological characters are not always sufficiently distinguishable. As a result, it is necessary to combine several methods of analysis that contribute to a distinct categorization of taxa. This study aimed to raise diagnostic characters, both morphological and molecular, for the correct identification of species of the genus Chrysomya (Diptera: Calliphoridae) recorded in the New World, which has continuously generated discussion about its taxonomic position over the last century. A clear example of this situation was the first record of Chrysomya rufifacies in Brazilian territory in 2012. However, the morphological polymorphism and genetic variability of Chrysomya albiceps studied here show that both species (C. rufifacies and C. albiceps) share very similar character states, leading to misidentification and subsequent registration error of species present in our territory. This conclusion is demonstrated by the authors, based on a review of the material deposited in major scientific collections in Brazil and subsequent molecular and phylogenetic analysis of these samples. Additionally, we have proposed a new taxonomic key to separate the species of Chrysomya found on the American continent, taking into account a larger number of characters beyond those available in current literature.
Resumo:
The present review addresses certain important aspects regarding nanoparticles and the environment, with an emphasis on plant science. The production and characterization of nanoparticles is the focus of this review, providing an idea of the range and the consolidation of these aspects in the literature, with modifications on the routes of synthesis and the application of the analytical techniques for characterization of the nanoparticles (NPs). Additionally, aspects related to the interaction between the NPs and plants, their toxicities, and the phytoremediation process, among others, are also discussed. Future trends are also presented, supplying evidence for certain possibilities regarding new research involving nanoparticles and plants.
Resumo:
ATP, via activation of P2X3 receptors, has been highlighted as a key target in inflammatory hyperalgesia. Therefore, the aim of this study was to confirm whether the activation of P2X3 receptors in the gastrocnemius muscle of rats induces mechanical muscle hyperalgesia and, if so, to analyze the involvement of the classical inflammatory mediators (bradykinin, prostaglandins, sympathetic amines, pro-inflammatory cytokines and neutrophil migration) in this response. Intramuscular administration of the non-selective P2X3 receptor agonist α,β-meATP in the gastrocnemius muscle of rats induced mechanical muscle hyperalgesia, which, in turn, was prevented by the selective P2X3 and P2X2/3 receptors antagonist A-317491, the selective bradykinin B1-receptor antagonist Des-Arg9-[Leu8]-BK (DALBK), the cyclooxygenase inhibitor indomethacin, the β1- or β2-adrenoceptor antagonist atenolol and ICI 118,551, respectively. Also, the nonspecific selectin inhibitor fucoidan. α,β-meATP induced increases in the local concentration of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β), which were reduced by bradykinin antagonist. Finally, α,β-meATP also induced neutrophil migration. Together, these findings suggest that α,β-meATP induced mechanical hyperalgesia in the gastrocnemius muscle of rats via activation of peripheral P2X3 receptors, which involves bradykinin, prostaglandins, sympathetic amines, pro-inflammatory cytokines release and neutrophil migration. It is also indicated that bradykinin is the key modulator of the mechanical muscle hyperalgesia induced by P2X3 receptors. Therefore, we suggest that P2X3 receptors are important targets to control muscle inflammatory pain.
Resumo:
Cocoa is rich in flavonoids, which are potent antioxidants with established benefits for cardiovascular health but unproven effects on neurodegeneration. Sirtuins (SIRTs), which make up a family of deacetylases, are thought to be sensitive to oxidation. In this study, the possible protective effects of cocoa in the diabetic retina were assessed. Rat Müller cells (rMCs) exposed to normal or high glucose (HG) or H2O2 were submitted to cocoa treatment in the presence or absence of SIRT-1 inhibitor and small interfering RNA The experimental animal study was conducted in streptozotocin-induced diabetic rats randomized to receive low-, intermediate-, or high-polyphenol cocoa treatments via daily gavage for 16 weeks (i.e., 0.12, 2.9 or 22.9 mg/kg/day of polyphenols). The rMCs exposed to HG or H2O2 exhibited increased glial fibrillary acidic protein (GFAP) and acetyl-RelA/p65 and decreased SIRT1 activity/expression. These effects were cancelled out by cocoa, which decreased reactive oxygen species production and PARP-1 activity, augmented the intracellular pool of NAD(+), and improved SIRT1 activity. The rat diabetic retinas displayed the early markers of retinopathy accompanied by markedly impaired electroretinogram. The presence of diabetes activated PARP-1 and lowered NAD(+) levels, resulting in SIRT1 impairment. This augmented acetyl RelA/p65 had the effect of up-regulated GFAP. Oral administration of polyphenol cocoa restored the above alterations in a dose-dependent manner. This study reveals that cocoa enriched with polyphenol improves the retinal SIRT-1 pathway, thereby protecting the retina from diabetic milieu insult.
Resumo:
Maternal high-fat diet (HFD) impairs hippocampal development of offspring promoting decreased proliferation of neural progenitors, in neuronal differentiation, in dendritic spine density and synaptic plasticity reducing neurogenic capacity. Notch signaling pathway participates in molecular mechanisms of the neurogenesis. The activation of Notch signaling leads to the upregulation of Hes5, which inhibits the proliferation and differentiation of neural progenitors. This study aimed to investigate the Notch/Hes pathway activation in the hippocampus of the offspring of dams fed an HFD. Female Swiss mice were fed a control diet (CD) and an HFD from pre-mating until suckling. The bodyweight and mass of adipose tissue in the mothers and pups were also measured. The mRNA and protein expression of Notch1, Hes5, Mash1, and Delta1 in the hippocampus was assessed by RT-PCR and western blotting, respectively. Dams fed the HFD and their pups had an increased bodyweight and amount of adipose tissue. Furthermore, the offspring of mothers fed the HFD exhibited an increased Hes5 expression in the hippocampus compared with CD offspring. In addition, HFD offspring also expressed increased amounts of Notch1 and Hes5 mRNA, whereas Mash1 expression was decreased. However, the expression of Delta1 did not change significantly. We propose that the overexpression of Hes5, a Notch effector, downregulates the expression of the proneural gene Mash1 in the offspring of obese mothers, delaying cellular differentiation. These results provide further evidence that an offspring's hippocampus is molecularly susceptible to maternal HFD and suggest that Notch1 signaling in this brain region is important for neuronal differentiation.
Resumo:
We tested the hypothesis that chronic pain development (pain chronification) and ongoing chronic pain (chronic pain) reduce the activity and induce plastic changes in an endogenous analgesia circuit, the ascending nociceptive control. An important mechanism mediating this form of endogenous analgesia, referred to as capsaicin-induced analgesia, is its dependence on nucleus accumbens μ-opioid receptor mechanisms. Therefore, we also investigated whether pain chronification and chronic pain alter the requirement for nucleus accumbens μ-opioid receptor mechanisms in capsaicin-induced analgesia. We used an animal model of pain chronification in which daily subcutaneous prostaglandin E2 (PGE2) injections into the rat's hind paw for 14 days, referred to as the induction period of persistent hyperalgesia, induce a long-lasting state of nociceptor sensitization referred to as the maintenance period of persistent hyperalgesia, that lasts for at least 30 days following the cessation of the PGE2 treatment. The nociceptor hypersensitivity was measured by the shortening of the time interval for the animal to respond to a mechanical stimulation of the hind paw. We found a significant reduction in the duration of capsaicin-induced analgesia during the induction and maintenance period of persistent mechanical hyperalgesia. Intra-accumbens injection of the μ-opioid receptor selective antagonist Cys(2),Tyr(3),Orn(5),Pen(7)amide (CTOP) 10 min before the subcutaneous injection of capsaicin into the rat's fore paw blocked capsaicin-induced analgesia. Taken together, these findings indicate that pain chronification and chronic pain reduce the duration of capsaicin-induced analgesia, without affecting its dependence on nucleus accumbens μ-opioid receptor mechanisms. The attenuation of endogenous analgesia during pain chronification and chronic pain suggests that endogenous pain circuits play an important role in the development and maintenance of chronic pain.
Resumo:
Vaso-occlusion, responsible for much of the morbidity of sickle-cell disease, is a complex multicellular process, apparently triggered by leukocyte adhesion to the vessel wall. The microcirculation represents a major site of leukocyte-endothelial interactions and vaso-occlusive processes. We have developed a biochip with subdividing interconnecting microchannels that decrease in size (40 μm to 10 μm in width), for use in conjunction with a precise microfluidic device, to mimic cell flow and adhesion through channels of sizes that approach those of the microcirculation. The biochips were utilized to observe the dynamics of the passage of neutrophils and red blood cells, isolated from healthy and sickle-cell anemia (SCA) individuals, through laminin or endothelial adhesion molecule-coated microchannels at physiologically relevant rates of flow and shear stress. Obstruction of E-selectin/intercellular adhesion molecule 1-coated biochip microchannels by SCA neutrophils was significantly greater than that observed for healthy neutrophils, particularly in the microchannels of 40-15 μm in width. Whereas SCA red blood cells alone did not significantly adhere to, or obstruct, microchannels, mixed suspensions of SCA neutrophils and red blood cells significantly adhered to and obstructed laminin-coated channels. Results from this in vitro microfluidic model support a primary role for leukocytes in the initiation of SCA occlusive processes in the microcirculation. This assay represents an easy-to-use and reproducible in vitro technique for understanding molecular mechanisms and cellular interactions occurring in subdividing microchannels of widths approaching those observed in the microvasculature. The assay could hold potential for testing drugs developed to inhibit occlusive mechanisms such as those observed in SCA and thrombotic diseases.
Resumo:
Mapping of elements in biological tissue by laser induced mass spectrometry is a fast growing analytical methodology in life sciences. This method provides a multitude of useful information of metal, nonmetal, metalloid and isotopic distribution at major, minor and trace concentration ranges, usually with a lateral resolution of 12-160 µm. Selected applications in medical research require an improved lateral resolution of laser induced mass spectrometric technique at the low micrometre scale and below. The present work demonstrates the applicability of a recently developed analytical methodology - laser microdissection associated to inductively coupled plasma mass spectrometry (LMD ICP-MS) - to obtain elemental images of different solid biological samples at high lateral resolution. LMD ICP-MS images of mouse brain tissue samples stained with uranium and native are shown, and a direct comparison of LMD and laser ablation (LA) ICP-MS imaging methodologies, in terms of elemental quantification, is performed.
Resumo:
Avian Pathogenic Escherichia coli (APEC) strains are extra-intestinal E. coli that infect poultry and cause diseases. Nitrite is a central branch-point in bacterial nitrogen metabolism and is used as a cytotoxin by macrophages. Unlike nitric oxide (NO), nitrite cannot diffuse across bacterial membrane cells. The NirC protein acts as a specific channel to facilitate the transport of nitrite into Salmonella and E. coli cells for nitrogen metabolism and cytoplasmic detoxification. NirC is also required for the pathogenicity of Salmonella by downregulating the production of NO by the host macrophages. Based on an in vitro microarray that revealed the overexpression of the nirC gene in APEC strain SCI-07, we constructed a nirC-deficient SCI-07 strain (ΔnirC) and evaluated its virulence potential using in vivo and in vitro assays. The final cumulative mortalities caused by mutant and wild-type (WT) were similar; while the ΔnirC caused a gradual increase in the mortality rate during the seven days recorded, the WT caused mortality up to 24h post-infection (hpi). Counts of the ΔnirC cells in the spleen, lung and liver were higher than those of the WT after 48 hpi but similar at 24 hpi. Although similar number of ΔnirC and WT cells was observed in macrophages at 3 hpi, there was higher number of ΔnirC cells at 16 hpi. The cell adhesion ability of the ΔnirC strain was about half the WT level in the presence and absence of alpha-D-mannopyranoside. These results indicate that the nirC gene influences the pathogenicity of SCI-07 strain.