27 resultados para necrosis
Resumo:
Calcium dynamics is central in cardiac physiology, as the key event leading to the excitation-contraction coupling (ECC) and relaxation processes. The primary function of Ca(2+) in the heart is the control of mechanical activity developed by the myofibril contractile apparatus. This key role of Ca(2+) signaling explains the subtle and critical control of important events of ECC and relaxation, such Ca(2+) influx and SR Ca(2+) release and uptake. The multifunctional Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) is a signaling molecule that regulates a diverse array of proteins involved not only in ECC and relaxation, but also in cell death, transcriptional activation of hypertrophy, inflammation and arrhythmias. CaMKII activity is triggered by an increase in intracellular Ca(2+) levels. This activity can be sustained, creating molecular memory after the decline in Ca(2+) concentration, by autophosphorylation of the enzyme, as well as by oxidation, glycosylation and nitrosylation at different sites of the regulatory domain of the kinase. CaMKII activity is enhanced in several cardiac diseases, altering the signaling pathways by which CaMKII regulates the different fundamental proteins involved in functional and transcriptional cardiac processes. Dysregulation of these pathways constitutes a central mechanism of various cardiac disease phenomena, like apoptosis and necrosis during ischemia/reperfusion injury, digitalis exposure, post-acidosis and heart failure arrhythmias, or cardiac hypertrophy. Here we summarize significant aspects of the molecular physiology of CaMKII and provide a conceptual framework for understanding the role of the CaMKII cascade on Ca(2+) regulation and dysregulation in cardiac health and disease.
Resumo:
This study investigated the presence of target bacterial species and the levels of endotoxins in teeth with apical periodontitis. Levels of inflammatory mediators (interleukin [IL]-1β and tumor necrosis factor [TNF]-α) were determined after macrophage stimulation with endodontic content after different phases of endodontic therapy using different irrigants. Thirty primarily infected root canals were randomly assigned into 3 groups according to the irrigant used for root canal preparation (n = 10 per group): GI: 2.5% sodium hypochlorite, GII: 2% chlorhexidine gel, and GIII (control group): saline solution. Root canal samples were taken by using paper points before (s1) and after root canal instrumentation (s2), subsequently to 17% EDTA (s3), after 30 days of intracanal medication (Ca[OH]2 + saline solution) (s4), and before root canal obturation (s5). Polymerase chain reaction (16S recombinant DNA) and limulus amebocyte lysate assay were used for bacterial and endotoxin detection, respectively. Macrophages were stimulated with the root canal contents for IL-1β/TNF-α measurement using enzyme-linked immunosorbent assay. Porphyromonas gingivalis (17/30), Porphyromonas endodontalis (15/30), and Prevotella nigrescens (11/30) were the most prevalent bacterial species. At s1, endotoxins were detected in 100% of the root canals (median = 32.43 EU/mL). In parallel, substantial amounts of IL-1β and TNF-α were produced by endodontic content-stimulated macrophages. At s2, a significant reduction in endotoxin levels was observed in all groups, with GI presenting the greatest reduction (P < .05). After a root canal rinse with EDTA (s3), intracanal medication (s4), and before root canal obturation (s5), endotoxin levels reduced without differences between groups (P < .05). IL-1β and TNF-α release decreased proportionally to the levels of residual endotoxin (P < .05). Regardless of the use of sodium hypochlorite or CHX, the greatest endotoxin reduction occurs after chemomechanical preparation. Increasing steps of root canal therapy associated with intracanal medication enhances endotoxin reduction, leading to a progressively lower activation of proinflammatory cells such as macrophages.
Resumo:
Riboflavin (vitamin B2) is a precursor for coenzymes involved in energy production, biosynthesis, detoxification, and electron scavenging. Previously, we demonstrated that irradiated riboflavin (IR) has potential antitumoral effects against human leukemia cells (HL60), human prostate cancer cells (PC3), and mouse melanoma cells (B16F10) through a common mechanism that leads to apoptosis. Hence, we here investigated the effect of IR on 786-O cells, a known model cell line for clear cell renal cell carcinoma (CCRCC), which is characterized by high-risk metastasis and chemotherapy resistance. IR also induced cell death in 786-O cells by apoptosis, which was not prevented by antioxidant agents. IR treatment was characterized by downregulation of Fas ligand (TNF superfamily, member 6)/Fas (TNF receptor superfamily member 6) (FasL/Fas) and tumor necrosis factor receptor superfamily, member 1a (TNFR1)/TNFRSF1A-associated via death domain (TRADD)/TNF receptor-associated factor 2 (TRAF) signaling pathways (the extrinsic apoptosis pathway), while the intrinsic apoptotic pathway was upregulated, as observed by an elevated Bcl-2 associated x protein/B-cell CLL/lymphoma 2 (Bax/Bcl-2) ratio, reduced cellular inhibitor of apoptosis 1 (c-IAP1) expression, and increased expression of apoptosis-inducing factor (AIF). The observed cell death was caspase-dependent as proven by caspase 3 activation and poly(ADP-ribose) polymerase-1 (PARP) cleavage. IR-induced cell death was also associated with downregulation of v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homologue (avian)/protein serine/threonine kinase B/extracellular signal-regulated protein kinase 1/2 (Src/AKT/ERK1/2) pathway and activation of p38 MAP kinase (p38) and Jun-amino-terminal kinase (JNK). Interestingly, IR treatment leads to inhibition of matrix metalloproteinase-2 (MMP-2) activity and reduced expression of renal cancer aggressiveness markers caveolin-1, low molecular weight phosphotyrosine protein phosphatase (LMWPTP), and kinase insert domain receptor (a type III receptor tyrosine kinase) (VEGFR-2). Together, these results show the potential of IR for treating cancer.
Resumo:
Dystrophin-deficient muscles have repeated cycles of necrosis and regeneration, being susceptible to injury induced by muscle contractions. Some studies have demonstrated that tendons are also affected in mdx mice, based especially on the changes in biomechanical properties arising from the respective linked muscles. However, most studies have focused only on alterations in the myotendinous junction. Thus, the purpose of this work was to study biochemical and morphological alterations in the Achilles tendons of 60-day-old mdx mice. Hydroxyproline quantification, showed higher collagen concentration in the mdx mice as compared with the control. No difference between the tendons of both groups was found in the noncollagenous proteins dosage, and in the amount of collagen type III detected in the western blotting analysis. The zymography for gelatinases detection showed higher amounts of metaloproteinase-2 (active isoform) and of metalloproteinase-9 (latent isoform) in the mdx mice. Measurements of birefringence, using polarization microscopy, showed higher molecular organization of the collagen fibers in the tendons of mdx mice in comparison to the control group, with presence of larger areas of crimp. Ponceau SS-stained tendon sections showed stronger staining of the extracellular matrix in the mdx groups. Toluidine blue-stained sections showed more intense basophilia in tendons of the control group. In morphometry, a higher number of inflammatory cells was detected in the epitendon of mdx group. In conclusion, the Achilles tendon of 60-day-old mdx mice presents higher collagen concentration and organization of the collagen fibers, enhanced metalloproteinase-2 activity, as well as prominent presence of inflammatory cells and lesser proteoglycans.
Resumo:
The purpose of this study was to correlate the pre-operative imaging, vascularity of the proximal pole, and histology of the proximal pole bone of established scaphoid fracture non-union. This was a prospective non-controlled experimental study. Patients were evaluated pre-operatively for necrosis of the proximal scaphoid fragment by radiography, computed tomography (CT) and magnetic resonance imaging (MRI). Vascular status of the proximal scaphoid was determined intra-operatively, demonstrating the presence or absence of puncate bone bleeding. Samples were harvested from the proximal scaphoid fragment and sent for pathological examination. We determined the association between the imaging and intra-operative examination and histological findings. We evaluated 19 male patients diagnosed with scaphoid nonunion. CT evaluation showed no correlation to scaphoid proximal fragment necrosis. MRI showed marked low signal intensity on T1-weighted images that confirmed the histological diagnosis of necrosis in the proximal scaphoid fragment in all patients. Intra-operative assessment showed that 90% of bones had absence of intra-operative puncate bone bleeding, which was confirmed necrosis by microscopic examination. In scaphoid nonunion MRI images with marked low signal intensity on T1-weighted images and the absence of intra-operative puncate bone bleeding are strong indicatives of osteonecrosis of the proximal fragment.
Resumo:
ATP, via activation of P2X3 receptors, has been highlighted as a key target in inflammatory hyperalgesia. Therefore, the aim of this study was to confirm whether the activation of P2X3 receptors in the gastrocnemius muscle of rats induces mechanical muscle hyperalgesia and, if so, to analyze the involvement of the classical inflammatory mediators (bradykinin, prostaglandins, sympathetic amines, pro-inflammatory cytokines and neutrophil migration) in this response. Intramuscular administration of the non-selective P2X3 receptor agonist α,β-meATP in the gastrocnemius muscle of rats induced mechanical muscle hyperalgesia, which, in turn, was prevented by the selective P2X3 and P2X2/3 receptors antagonist A-317491, the selective bradykinin B1-receptor antagonist Des-Arg9-[Leu8]-BK (DALBK), the cyclooxygenase inhibitor indomethacin, the β1- or β2-adrenoceptor antagonist atenolol and ICI 118,551, respectively. Also, the nonspecific selectin inhibitor fucoidan. α,β-meATP induced increases in the local concentration of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β), which were reduced by bradykinin antagonist. Finally, α,β-meATP also induced neutrophil migration. Together, these findings suggest that α,β-meATP induced mechanical hyperalgesia in the gastrocnemius muscle of rats via activation of peripheral P2X3 receptors, which involves bradykinin, prostaglandins, sympathetic amines, pro-inflammatory cytokines release and neutrophil migration. It is also indicated that bradykinin is the key modulator of the mechanical muscle hyperalgesia induced by P2X3 receptors. Therefore, we suggest that P2X3 receptors are important targets to control muscle inflammatory pain.
Resumo:
This clinical study assessed the influence of different intracanal medications on Th1-type and Th2-type cytokine responses in apical periodontitis and monitored the levels of bacteria from primarily infection during endodontic procedures. Thirty primarily infected teeth were randomly divided into 3 groups according to the medication selected: chlorhexidine (CHX), 2% CHX gel; Ca(OH)2/SSL, Ca(OH)2 + SSL; and Ca(OH)2/CHX, Ca(OH)2 + 2% CHX gel (all, n = 10). Bacterial sample was collected from root canals, and the interstitial fluid was sampled from lesions. Culture techniques were used to determine bacterial counts (colony-forming units/mL). Th1 (tumor necrosis factor-α, interferon-γ, and interleukin [IL]-2) and Th2 cytokines (IL-4, IL-5, and IL-13) were measured by enzyme-linked immunosorbent assay. All intracanal medication protocols were effective in reducing the bacterial load from root canals (all P < .05) and lowering the levels of Th1-type cytokines in apical lesions (all P < .05), with no differences between them (P > .05). Both Ca(OH)2 treatment protocols significantly increased the levels of Th2-type cytokines (P < .05), with no differences between them (P > .05). Thus, chlorhexidine medication showed the lowest effectiveness in increasing the levels of Th2-type cytokine. After treatment, regardless of the type of medication, the linear regression analysis indicated the down-regulation of Th2-type cytokines by Th1-type cytokines. All intracanal medication protocols were effective in reducing bacterial load and lowering the levels of Th1-type cytokines. Thus, the use of Ca(OH)2 medications contributed to the increase in the Th2-type cytokine response in apical periodontitis.
Resumo:
INTRODUCTION: Data is scarce regarding adverse events (AE) of biological therapy used in the management of Crohn's Disease (CD) among Brazilian patients. OBJECTIVES: To analyse AE prevalence and profile in patients with CD treated with Infliximab (IFX) or Adalimumab (ADA) and to verify whether there are differences between the two drugs. METHOD: Retrospective observational single-centre study of CD patients on biological therapy. Variables analysed: Demographic data, Montreal classification, biological agent administered, treatment duration, presence and type of AE and the need for treatment interruption. RESULTS: Forty-nine patients were analysed, 25 treated with ADA and 24 with IFX. The groups were homogeneous in relation to the variables studied. The average follow-up period for the group treated with ADA was 19.3 months and 21.8 months for the IFX group (p = 0.585). Overall, 40% (n = 10) of patients taking ADA had AE compared with 50% (n = 12) of IFX users (p = 0.571). There was a tendency towards higher incidence of cutaneous and infusion reactions in the IFX group and higher incidence of infections in the ADA treated group, although without significant difference. CONCLUSIONS: No difference was found in the AE prevalence and profile between ADA and IFX CD patients in the population studied.
Resumo:
A 6 month-old mulatto boy was admitted on account of acute gastroenteritis, malnutrition and dehydration. In the hospital, the child developed septicemia, and temperature reached up to 38.6°C. Despite intensive antibiotic treatment, the patient died 12 days after admission. Necropsy disclosed bilateral bronchopneumonia, bilateral fronto-parietal subarachnoid hemorrhage, and extensive necrosis of the inferior half of both cerebellar hemispheres. On histopathological examination of the necrotic cerebellar cortex, numerous sickled erythrocytes were observed in petechial hemorrhages and, in lesser quantities, inside capillaries. Lesions of the central nervous system in sickle cell anemia most often involve the cerebral cortex, and a single extensive cerebellar infarction as present in this case seems extremely rare. The pathogenetic mechanism of the necrosis is unclear, since thrombosis was not observed either in large blood vessels or in capillaries. Possible contributory factors were the infectious condition (septicemia), fever, and anoxia caused by the extensive bronchopneumonia.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física